
Package: redist (via r-universe)
September 5, 2024

Version 4.2.0.9000

Date 2024-01-11

Title Simulation Methods for Legislative Redistricting

Maintainer Christopher T. Kenny <christopherkenny@fas.harvard.edu>

Description Enables researchers to sample redistricting plans from a
pre-specified target distribution using Sequential Monte Carlo
and Markov Chain Monte Carlo algorithms. The package allows for
the implementation of various constraints in the redistricting
process such as geographic compactness and population parity
requirements. Tools for analysis such as computation of various
summary statistics and plotting functionality are also
included. The package implements the SMC algorithm of McCartan
and Imai (2023) <doi:10.1214/23-AOAS1763>, the enumeration
algorithm of Fifield, Imai, Kawahara, and Kenny (2020)
<doi:10.1080/2330443X.2020.1791773>, the Flip MCMC algorithm of
Fifield, Higgins, Imai and Tarr (2020)
<doi:10.1080/10618600.2020.1739532>, the
Merge-split/Recombination algorithms of Carter et al. (2019)
<arXiv:1911.01503> and DeFord et al. (2021)
<doi:10.1162/99608f92.eb30390f>, and the Short-burst
optimization algorithm of Cannon et al. (2020)
<arXiv:2011.02288>.

Depends R (>= 3.5.0), redistmetrics (>= 1.0.2)

Imports Rcpp (>= 0.11.0), rlang, cli (>= 3.1.0), vctrs, tidyselect,
stringr, dplyr (>= 1.0.0), sf, doParallel, foreach, doRNG,
servr, sys, ggplot2, patchwork

Suggests coda, matrixStats, loo, Rmpi, withr, knitr, rmarkdown,
rmapshaper, ggpattern, scales, units, RSpectra, testthat (>=
3.0.0), spelling

LinkingTo Rcpp, RcppArmadillo, RcppThread, cli, redistmetrics

License GPL (>= 2)

SystemRequirements C++17, python

NeedsCompilation yes

1

https://doi.org/10.1214/23-AOAS1763
https://doi.org/10.1080/2330443X.2020.1791773
https://doi.org/10.1080/10618600.2020.1739532
https://arxiv.org/abs/1911.01503
https://doi.org/10.1162/99608f92.eb30390f
https://arxiv.org/abs/2011.02288

2 Contents

BugReports https://github.com/alarm-redist/redist/issues

URL https://alarm-redist.org/redist/

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

VignetteBuilder knitr

Encoding UTF-8

Config/testthat/edition 3

Language en-US

LazyData true

Repository https://alarm-redist.r-universe.dev

RemoteUrl https://github.com/alarm-redist/redist

RemoteRef dev

RemoteSha cf699032ab6627911d099454d3c6461033eb0751

Contents
add_reference . 5
avg_by_prec . 5
classify_plans . 6
compare_plans . 6
competitiveness . 8
constraints . 9
county_splits . 13
distr_compactness . 13
EPSG . 17
fl25 . 17
fl250 . 18
fl25_adj . 19
fl25_enum . 20
fl70 . 20
freeze . 21
get_adj . 22
get_existing . 23
get_mh_acceptance_rate . 23
get_plans_matrix . 24
get_plans_weights . 24
get_pop_tol . 25
get_sampling_info . 25
get_target . 26
group_frac . 26
iowa . 27
is_contiguous . 28
is_county_split . 28
last_plan . 29

https://github.com/alarm-redist/redist/issues
https://alarm-redist.org/redist/

Contents 3

make_cores . 29
match_numbers . 30
merge_by . 31
min_move_parity . 32
muni_splits . 33
number_by . 33
partisan_metrics . 34
pl . 36
plans_diversity . 37
plan_distances . 38
plot.redist_classified . 39
plot.redist_constr . 40
plot.redist_map . 41
plot.redist_plans . 42
prec_assignment . 42
prec_cooccurrence . 43
print.redist_classified . 43
print.redist_constr . 44
print.redist_map . 44
print.redist_plans . 45
proj . 45
pullback . 47
rbind.redist_plans . 47
redist.adjacency . 48
redist.calc.frontier.size . 48
redist.coarsen.adjacency . 49
redist.combine.mpi . 49
redist.constraint.helper . 51
redist.county.id . 52
redist.county.relabel . 53
redist.crsg . 53
redist.diagplot . 55
redist.dist.pop.overlap . 57
redist.district.splits . 58
redist.enumpart . 59
redist.find.target . 60
redist.findparams . 60
redist.init.enumpart . 63
redist.ipw . 63
redist.mcmc.mpi . 66
redist.multisplits . 69
redist.parity . 70
redist.plot.adj . 70
redist.plot.contr_pfdr . 71
redist.plot.cores . 72
redist.plot.distr_qtys . 73
redist.plot.hist . 75
redist.plot.majmin . 76

4 Contents

redist.plot.map . 76
redist.plot.penalty . 77
redist.plot.plans . 78
redist.plot.scatter . 79
redist.plot.trace . 80
redist.plot.varinfo . 81
redist.plot.wted.adj . 81
redist.prec.pop.overlap . 82
redist.prep.enumpart . 83
redist.random.subgraph . 84
redist.read.enumpart . 85
redist.reduce.adjacency . 86
redist.reorder . 86
redist.rsg . 87
redist.run.enumpart . 88
redist.sink.plan . 89
redist.smc_is_ci . 90
redist.subset . 91
redist.uncoarsen . 92
redist.wted.adj . 92
redist_ci . 93
redist_constr . 94
redist_flip . 95
redist_flip_anneal . 99
redist_map . 100
redist_mergesplit . 102
redist_mergesplit_parallel . 104
redist_plans . 107
redist_quantile_trunc . 108
redist_shortburst . 109
redist_smc . 111
scorer-arith . 114
scorer-combine . 114
scorer_group_pct . 115
segregation_index . 117
subset_sampled . 118
summary.redist_plans . 119
tally_var . 120

Index 121

add_reference 5

add_reference Add a reference plan to a set of plans

Description

This function facilitates comparing an existing (i.e., non-simulated) redistricting plan to a set of
simulated plans.

Usage

add_reference(plans, ref_plan, name = NULL)

Arguments

plans a redist_plans object

ref_plan an integer vector containing the reference plan. It will be renumbered to 1..ndists.

name a human-readable name for the reference plan. Defaults to the name of ref_plan.

Value

a modified redist_plans object containing the reference plan

avg_by_prec Average a variable by precinct (Deprecated)

Description

Deprecated in favor of proj_avg(). Takes a column of a redist_plans object and averages it
across a set of draws for each precinct.

Usage

avg_by_prec(plans, x, draws = NA)

Arguments

plans a redist_plans object

x an expression to average. Tidy-evaluated in plans.

draws which draws to average. NULL will average all draws, including reference plans.
The special value NA will average all sampled draws. An integer, logical, or
character vector indicating specific draws may also be provided.

Value

a vector of length matching the number of precincts, containing the average.

6 compare_plans

classify_plans Hierarchically classify a set of redistricting plans

Description

Applies hierarchical clustering to a distance matrix computed from a set of plans and takes the first
k splits.

Usage

classify_plans(dist_mat, k = 8, method = "complete")

Arguments

dist_mat a distance matrix, the output of plan_distances()

k the number of groupings to create

method the clustering method to use. See hclust() for options.

Value

An object of class redist_classified, which is a list with two elements:

groups A character vector of group labels of the form "I.A.1.a.i", one for each plan.

splits A list of splits in the hierarchical clustering. Each list element is a list of two
mutually exclusive vectors of plan indices, labeled by their group classification,
indicating the plans on each side of the split.

Use plot.redist_classified() for a visual summary.

compare_plans Make a comparison between two sets of plans

Description

This function provides one way to identify the structural differences between two sets of redistrict-
ing plans. It operates by computing the precinct co-occurrence matrix (a symmetric matrix where
the i,j-th entry is the fraction of plans where precinct i and j are in the same district) for each set,
and then computing the first eigenvalue of the difference in these two matrices (in each direction).
These eigenvalues identify the important parts of the map.

compare_plans 7

Usage

compare_plans(
plans,
set1,
set2,
shp = NULL,
plot = "fill",
thresh = 0.1,
labs = c("Set 1", "Set 2"),
ncores = 1

)

Arguments

plans a redist_plans object

set1 <data-masking> indexing vectors for the plan draws to compare. Alternatively,
a second redist_plans object to compare to.

set2 <data-masking> indexing vectors for the plan draws to compare. Must be mu-
tually exclusive with set1.

shp a shapefile for plotting.

plot If plot="line", display a plot for each set showing the set of boundaries which
most distinguish it from the other set (the squared differences in the eigenvector
values across the boundary). If plot="fill", plot the eigenvector for each set as
a choropleth. If plot = 'adj', plot the shows the adjacency graph edges which
most distinguish it from the other set. The adj option is a different graphical op-
tion of the same information as the line option. See below for more information.
Set to FALSE to disable plotting (or leave out shp).

thresh the value to threshold the eigenvector at in determining the relevant set of precincts
for comparison.

labs the names of the panels in the plot.

ncores the number of parallel cores to use.

Details

The co-occurrence matrices are regularized with a Beta(1/ndists, 1 − 1/ndists) prior, which is
useful for when either set1 or set2 is small.

Value

If possible, makes a comparison plot according to plot. Otherwise returns the following list:

eigen1 A numeric vector containing the first eigenvector of p1 - p2, where p1 and p2
are the co-occurrence matrices for set1 and set2, respectively.

eigen2 A numeric vector containing the first eigenvector of p2 - p1, where p1 and p2
are the co-occurrence matrices for set1 and set2, respectively.

8 competitiveness

group_1a, group_1b
Lists of precincts. Compared to set2, in the set1 plans these precincts were
much more likely to be in separate districts. Computed by thresholding eigen1
at thresh.

group_2a, group_2b
Lists of precincts. Compared to set1, in the set2 plans these precincts were
much more likely to be in separate districts. Computed by thresholding eigen2
at thresh.

cooccur_sep_1 The difference in the average co-occurrence of precincts in group_1a and group_1b
between set2 and set1. Higher indicates better separation.

cooccur_sep_2 The difference in the average co-occurrence of precincts in group_2a and group_2b
between set1 and set2. Higher indicates better separation.

Examples

data(iowa)
iowa_map <- redist_map(iowa, ndists = 4, pop_tol = 0.05)
plans1 <- redist_smc(iowa_map, 100, silent = TRUE)
plans2 <- redist_mergesplit(iowa_map, 200, warmup = 100, silent = TRUE)
compare_plans(plans1, plans2, shp = iowa_map)
compare_plans(plans2, as.integer(draw) <= 20,

as.integer(draw) > 20, shp = iowa_map, plot = "line")

competitiveness Compute Competitiveness

Description

Currently only implements the competitiveness function in equation (5) of Cho & Liu 2016.

Usage

competitiveness(map, rvote, dvote, .data = cur_plans())

redist.competitiveness(plans, rvote, dvote, alpha = 1, beta = 1)

Arguments

map a redist_map object

rvote A numeric vector with the Republican vote for each precinct.

dvote A numeric vector with the Democratic vote for each precinct.

.data a redist_plans object

plans A numeric vector (if only one map) or matrix with one row for each precinct
and one column for each map. Required.

alpha A numeric value for the alpha parameter for the talisman metric

beta A numeric value for the beta parameter for the talisman metric

constraints 9

Value

Numeric vector with competitiveness scores

Examples

data(fl25)
data(fl25_enum)

plans_05 <- fl25_enum$plans[, fl25_enum$pop_dev <= 0.05]
old: comp <- redist.competitiveness(plans_05, fl25$mccain, fl25$obama)
comp <- compet_talisman(plans_05, fl25, mccain, obama)

constraints Sampling constraints

Description

The redist_smc() and redist_mergesplit() algorithms in this package allow for additional
constraints on the redistricting process to be encoded in the target distribution for sampling. These
functions are provided to specify these constraints. All arguments are quoted and evaluated in the
context of the data frame provided to redist_constr().

Usage

add_constr_status_quo(constr, strength, current)

add_constr_grp_pow(
constr,
strength,
group_pop,
total_pop = NULL,
tgt_group = 0.5,
tgt_other = 0.5,
pow = 1

)

add_constr_grp_hinge(
constr,
strength,
group_pop,
total_pop = NULL,
tgts_group = c(0.55)

)

add_constr_grp_inv_hinge(
constr,

10 constraints

strength,
group_pop,
total_pop = NULL,
tgts_group = c(0.55)

)

add_constr_compet(constr, strength, dvote, rvote, pow = 0.5)

add_constr_incumbency(constr, strength, incumbents)

add_constr_splits(constr, strength, admin)

add_constr_multisplits(constr, strength, admin)

add_constr_total_splits(constr, strength, admin)

add_constr_pop_dev(constr, strength)

add_constr_segregation(constr, strength, group_pop, total_pop = NULL)

add_constr_polsby(constr, strength, perim_df = NULL)

add_constr_fry_hold(
constr,
strength,
total_pop = NULL,
ssdmat = NULL,
denominator = 1

)

add_constr_log_st(constr, strength, admin = NULL)

add_constr_edges_rem(constr, strength)

add_constr_custom(constr, strength, fn)

Arguments

constr A redist_constr() object

strength The strength of the constraint. Higher values mean a more restrictive constraint.

current The reference map for the status quo constraint.

group_pop A vector of group population

total_pop A vector of total population. Defaults to the population vector used for sampling.
tgt_group, tgt_other

Target group shares for the power-type constraint.

pow The exponent for the power-type constraint.

tgts_group A vector of target group shares for the hinge-type constraint.

constraints 11

dvote, rvote A vector of Democratic or Republican vote counts

incumbents A vector of unit indices for incumbents. For example, if three incumbents live in
the precincts that correspond to rows 1, 2, and 100 of your redist_map, entering
incumbents = c(1, 2, 100) would avoid having two or more incumbents be in the
same district.

admin A vector indicating administrative unit membership

perim_df A dataframe output from redistmetrics::prep_perims

ssdmat Squared distance matrix for Fryer Holden constraint

denominator Fryer Holden minimum value to normalize by. Default is 1 (no normalization).

fn A function

Details

All constraints are fed into a Gibbs measure, with coefficients on each constraint set by the corre-
sponding strength parameter. The strength can be any real number, with zero corresponding to no
constraint. Higher and higher strength values will eventually cause the algorithm’s accuracy and
efficiency to suffer. Whenever you use constraints, be sure to check all sampling diagnostics.

The status_quo constraint adds a term measuring the variation of information distance between
the plan and the reference, rescaled to [0, 1].

The grp_hinge constraint takes a list of target group percentages. It matches each district to
its nearest target percentage, and then applies a penalty of the form

√
max(0, tgt− grouppct),

summing across districts. This penalizes districts which are below their target percentage. Use
plot.redist_constr() to visualize the effect of this constraint and calibrate strength appropri-
ately.

The grp_inv_hinge constraint takes a list of target group percentages. It matches each district to
its nearest target percentage, and then applies a penalty of the form

√
max(0, grouppct− tgt),

summing across districts. This penalizes districts which are above their target percentage. Use
plot.redist_constr() to visualize the effect of this constraint and calibrate strength appropri-
ately.

The grp_pow constraint (for expert use) adds a term of the form (|tgtgroup−grouppct||tgtother−
grouppct|)pow), which encourages districts to have group shares near either tgt_group or tgt_other.
Values of strength depend heavily on the values of these parameters and especially the pow param-
eter. Use plot.redist_constr() to visualize the effect of this constraint and calibrate strength
appropriately.

The compet constraint encourages competitiveness by applying the grp_pow constraint with target
percentages set to 50%. For convenience, it is specified with Democratic and Republican vote
shares.

The incumbency constraint adds a term counting the number of districts containing paired-up in-
cumbents. Values of strength should generally be small, given that the underlying values are
counts.

The splits constraint adds a term counting the number of counties which are split once or more.
Values of strength should generally be small, given that the underlying values are counts.

The multisplits constraint adds a term counting the number of counties which are split twice or
more. Values of strength should generally be small, given that the underlying values are counts.

12 constraints

The total_splits constraint adds a term counting the total number of times each county is split,
summed across counties (i.e., counting the number of excess district-county pairs). Values of
strength should generally be small, given that the underlying values are counts.

The edges_rem constraint adds a term counting the number of edges removed from the adjacency
graph. This is only usable with redist_flip(), as other algorithms implicitly use this via the
compactness parameter. Values of strength should generally be small, given that the underlying
values are counts.

The log_st constraint constraint adds a term counting the log number of spanning trees. This
is only usable with redist_flip(), as other algorithms implicitly use this via the compactness
parameter.

The polsby constraint adds a term encouraging compactness as defined by the Polsby Popper met-
ric. Values of strength may be of moderate size.

The fry_hold constraint adds a term encouraging compactness as defined by the Fryer Holden
metric. Values of strength should be extremely small, as the underlying values are massive when
the true minimum Fryer Holden denominator is not known.

The segregation constraint adds a term encouraging segregation among minority groups, as mea-
sured by the dissimilarity index.

The pop_dev constraint adds a term encouraging plans to have smaller population deviations from
the target population.

The custom constraint allows the user to specify their own constraint using a function which evalu-
ates districts one at a time. The provided function fn should take two arguments: a vector describing
the current plan assignment for each unit as its first argument, and an integer describing the district
which to evaluate in the second argument. which([plans == distr]) would give the indices of
the units that are assigned to a district distr in any iteration. The function must return a single
scalar for each plan - district combination, where a value of 0 indicates no penalty is applied. If
users want to penalize an entire plan, they can have the penalty function return a scalar that does
not depend on the district. It is important that fn not use information from precincts not included in
distr, since in the case of SMC these precincts may not be assigned any district at all (plan will
take the value of 0 for these precincts). The flexibility of this constraint comes with an additional
computational cost, since the other constraints are written in C++ and so are more performant.

Examples

data(iowa)
iowa_map <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.05)
constr <- redist_constr(iowa_map)
constr <- add_constr_splits(constr, strength = 1.5, admin = name)
constr <- add_constr_grp_hinge(constr, strength = 100,

dem_08, tot_08, tgts_group = c(0.5, 0.6))
encourage districts to have the same number of counties
constr <- add_constr_custom(constr, strength = 1000, fn = function(plan, distr) {

notice that we only use information on precincts in `distr`
abs(sum(plan == distr) - 99/4)

})
print(constr)

county_splits 13

county_splits Count County Splits

Description

Count County Splits

Usage

county_splits(map, counties, .data = cur_plans())

redist.splits(plans, counties)

Arguments

map a redist_map object

counties A vector of county names or county ids.

.data a redist_plans object

plans A numeric vector (if only one map) or matrix with one row for each precinct
and one column for each map. Required.

Value

integer vector with one number for each map

distr_compactness Calculate compactness measures for a set of plans

Description

redist.compactness is used to compute different compactness statistics for a shapefile. It cur-
rently computes the Polsby-Popper, Schwartzberg score, Length-Width Ratio, Convex Hull score,
Reock score, Boyce Clark Index, Fryer Holden score, Edges Removed number, and the log of the
Spanning Trees.

Usage

distr_compactness(map, measure = "FracKept", .data = cur_plans(), ...)

redist.compactness(
shp = NULL,
plans,
measure = c("PolsbyPopper"),
total_pop = NULL,
adj = NULL,

14 distr_compactness

draw = 1,
ncores = 1,
counties = NULL,
planarize = 3857,
ppRcpp,
perim_path,
perim_df

)

Arguments

map a redist_map object

measure A vector with a string for each measure desired. "PolsbyPopper", "Schwartzberg",
"LengthWidth", "ConvexHull", "Reock", "BoyceClark", "FryerHolden", "Edges-
Removed", "FracKept", and "logSpanningTree" are implemented. Defaults to
"PolsbyPopper". Use "all" to return all implemented measures.

.data a redist_plans object

... passed on to redist.compactness

shp A SpatialPolygonsDataFrame or sf object. Required unless "EdgesRemoved"
and "logSpanningTree" with adjacency provided.

plans A numeric vector (if only one map) or matrix with one row for each precinct
and one column for each map. Required.

total_pop A numeric vector with the population for every observation. Is only necessary
when "FryerHolden" is used for measure. Defaults to NULL.

adj A zero-indexed adjacency list. Only used for "PolsbyPopper", EdgesRemoved"
and "logSpanningTree". Created with redist.adjacency if not supplied and
needed. Default is NULL.

draw A numeric to specify draw number. Defaults to 1 if only one map provided and
the column number if multiple maps given. Can also take a factor input, which
will become the draw column in the output if its length matches the number of
entries in plans. If the plans input is a redist_plans object, it extracts the
draw identifier.

ncores Number of cores to use for parallel computing. Default is 1.

counties A numeric vector from 1:ncounties corresponding to counties. Required for
"logSpanningTree".

planarize a number, indicating the CRS to project the shapefile to if it is latitude-longitude
based. Set to FALSE to avoid planarizing.

ppRcpp Boolean, whether to run Polsby Popper and Schwartzberg using Rcpp. It has a
higher upfront cost, but quickly becomes faster. Becomes TRUE if ncol(district_membership
> 8) and not manually set.

perim_path it checks for an Rds, if no rds exists at the path, it creates an rds with borders
and saves it. This can be created in advance with prep_perims().

perim_df A dataframe output from prep_perims().

distr_compactness 15

Details

This function computes specified compactness scores for a map. If there is more than one shape
specified for a single district, it combines them, if necessary, and computes one score for each
district.

Polsby-Popper is computed as
4 ∗ π ∗A(d)

P (d)2

where A is the area function, the district is d, and P is the perimeter function. All values are between
0 and 1, where larger values are more compact.

Schwartzberg is computed as
P (d)

2 ∗ π ∗
√

A(d)
π

where A is the area function, the district is d, and P is the perimeter function. All values are between
0 and 1, where larger values are more compact.

The Length Width ratio is computed as
length

width

where length is the shorter of the maximum x distance and the maximum y distance. Width is the
longer of the two values. All values are between 0 and 1, where larger values are more compact.

The Convex Hull score is computed as
A(d)

A(CVH)

where A is the area function, d is the district, and CVH is the convex hull of the district. All values
are between 0 and 1, where larger values are more compact.

The Reock score is computed as
A(d)

A(MBC)

where A is the area function, d is the district, and MBC is the minimum bounding circle of the
district. All values are between 0 and 1, where larger values are more compact.

The Boyce Clark Index is computed as

1−
16∑
1

{
| ri∑

i ri
∗ 100− 6.25|}
200

. The ri are the distances of the 16 radii computed from the geometric centroid of the shape to
the most outward point of the shape that intersects the radii, if the centroid is contained within the
shape. If the centroid lies outside of the shape, a point on the surface is used, which will naturally
incur a penalty to the score. All values are between 0 and 1, where larger values are more compact.

The Fryer Holden score for each district is computed with

Pop⊙D(precinct)2

, where Pop is the population product matrix. Each element is the product of the i-th and j-th
precinct’s populations. D represents the distance, where the matrix is the distance between each

16 distr_compactness

precinct. To fully compute this index, for any map, the sum of these values should be used as the
numerator. The denominator can be calculated from the full enumeration of districts as the smallest
calculated numerator. This produces very large numbers, where smaller values are more compact.

The log spanning tree measure is the logarithm of the product of the number of spanning trees which
can be drawn on each district.

The edges removed measure is number of edges removed from the underlying adjacency graph. A
smaller number of edges removed is more compact.

The fraction kept measure is the fraction of edges that were not removed from the underlying adja-
cency graph. This takes values 0 - 1, where 1 is more compact.

Value

A tibble with a column that specifies the district, a column for each specified measure, and a column
that specifies the map number.

References

Boyce, R., & Clark, W. 1964. The Concept of Shape in Geography. Geographical Review, 54(4),
561-572.

Cox, E. 1927. A Method of Assigning Numerical and Percentage Values to the Degree of Round-
ness of Sand Grains. Journal of Paleontology, 1(3), 179-183.

Fryer R, Holden R. 2011. Measuring the Compactness of Political Districting Plans. Journal of
Law and Economics.

Harris, Curtis C. 1964. “A scientific method of districting”. Behavioral Science 3(9), 219–225.

Maceachren, A. 1985. Compactness of Geographic Shape: Comparison and Evaluation of Mea-
sures. Geografiska Annaler. Series B, Human Geography, 67(1), 53-67.

Polsby, Daniel D., and Robert D. Popper. 1991. “The Third Criterion: Compactness as a procedural
safeguard against partisan gerrymandering.” Yale Law & Policy Review 9 (2): 301–353.

Reock, E. 1961. A Note: Measuring Compactness as a Requirement of Legislative Apportionment.
Midwest Journal of Political Science, 5(1), 70-74.

Schwartzberg, Joseph E. 1966. Reapportionment, Gerrymanders, and the Notion of Compactness.
Minnesota Law Review. 1701.

Examples

data(fl25)
data(fl25_enum)

plans_05 <- fl25_enum$plans[, fl25_enum$pop_dev <= 0.05]

old redist.compactness(
shp = fl25, plans = plans_05[, 1:3],
measure = c("PolsbyPopper", "EdgesRemoved")
)
comp_polsby(plans_05[, 1:3], fl25)
comp_edges_rem(plans_05[, 1:3], fl25, fl25$adj)

EPSG 17

EPSG EPSG Table

Description

This data contains NAD83 (HARN) EPSG codes for every U.S. state. Since redist uses projected
geometries, it is often a good idea to use projections tailored to a particular state, rather than, for
example, a Mercator projection. Use these codes along with sf::st_transform() to project your
shapefiles nicely.

Usage

data("EPSG")

Format

named list containing EPSG codes for each U.S. state. Codes are indexed by state abbreviations.

Examples

data(EPSG)
EPSG$WA # 2855

fl25 Florida 25 Precinct Shape File

Description

This data set contains the 25-precinct shapefile and related data for each precinct. All possible par-
titions of the 25 precincts into three contiguous congressional districts are stored in fl25_enum, and
the corresponding adjacency graph is stored in fl25_adj. This is generally useful for demonstrating
basic algorithms locally.

Usage

data("fl25")

Format

sf data.frame containing columns for useful data related to the redistricting process, subsetted from
real data in Florida, and sf geometry column.

geoid Contains unique identifier for each precinct which can be matched to the full Florida dataset.

pop Contains the population of each precinct.

vap Contains the voting age population of each precinct.

obama Contains the 2012 presidential vote for Obama.

18 fl250

mccain Contains the 2012 presidential vote for McCain.

TotPop Contains the population of each precinct. Identical to pop.

BlackPop Contains the black population of each precinct.

HispPop Contains the Hispanic population of each precinct.

VAP Contains the voting age population of each precinct. Identical to vap.

BlackVAP Contains the voting age population of black constituents of each precinct.

HispVAP Contains the voting age population of hispanic constituents of each precinct.

geometry Contains sf geometry of each precinct.

References

Fifield, Benjamin, Michael Higgins, Kosuke Imai and Alexander Tarr. (2016) "A New Automated
Redistricting Simulator Using Markov Chain Monte Carlo." Working Paper. Available at http:
//imai.princeton.edu/research/files/redist.pdf.

Examples

data(fl25)

fl250 Florida 250 Precinct Shape File

Description

This data set contains the 250 Precinct shapefile and related data for each precinct.

Usage

data("fl250")

Format

sf data.frame containing columns for useful data related to the redistricting process, subsetted from
real data in Florida, and sf geometry column.

geoid Contains unique identifier for each precinct which can be matched to the full Florida dataset.

pop Contains the population of each precinct.

vap Contains the voting age population of each precinct.

obama Contains the 2012 presidential vote for Obama.

mccain Contains the 2012 presidential vote for McCain.

TotPop Contains the population of each precinct. Identical to pop.

BlackPop Contains the black population of each precinct.

HispPop Contains the Hispanic population of each precinct.

http://imai.princeton.edu/research/files/redist.pdf
http://imai.princeton.edu/research/files/redist.pdf

fl25_adj 19

VAP Contains the voting age population of each precinct. Identical to vap.

BlackVAP Contains the voting age population of black constituents of each precinct.

HispVAP Contains the voting age population of hispanic constituents of each precinct.

geometry Contains sf geometry of each precinct.

Details

It is a random 70 precinct connected subset from Florida’s precincts. This was introduced by
doi:10.1080/2330443X.2020.1791773

References

Benjamin Fifield, Kosuke Imai, Jun Kawahara & Christopher T. Kenny (2020) The Essential Role
of Empirical Validation in Legislative Redistricting Simulation, Statistics and Public Policy, 7:1,
52-68, doi:10.1080/2330443X.2020.1791773

Examples

data(fl250)

fl25_adj Florida 25 Precinct File

Description

This data set contains the 25-precinct shapefile and related data for each precinct. All possible
partitions of the 25 precincts into three contiguous congressional districts are stored in fl25_enum,
and the corresponding adjacency graph is stored in fl25_adj.

Format

A list storing the adjacency graph for the 25-precinct subset of Florida.

References

Fifield, Benjamin, Michael Higgins, Kosuke Imai and Alexander Tarr. (2016) "A New Automated
Redistricting Simulator Using Markov Chain Monte Carlo." Working Paper. Available at http:
//imai.princeton.edu/research/files/redist.pdf.

Examples

data(fl25_adj)

https://doi.org/10.1080/2330443X.2020.1791773
http://imai.princeton.edu/research/files/redist.pdf
http://imai.princeton.edu/research/files/redist.pdf

20 fl70

fl25_enum All Partitions of 25 Precincts into 3 Congressional Districts (No Pop-
ulation Constraint)

Description

This data set contains demographic and geographic information about 25 contiguous precincts in
the state of Florida. The data lists all possible partitions of the 25 precincts into three contiguous
congressional districts. The 25-precinct shapefile may be found in fl25

Usage

data("fl25_enum")

Format

A list with two entries:

plans A matrix containing every partition of the 25 precincts into three contiguous congressional
districts, with no population constraint.

pop_dev A vector containing the maximum population deviation across the three districts for each
plan.

References

Fifield, Benjamin, Michael Higgins, Kosuke Imai and Alexander Tarr. (2016) "A New Automated
Redistricting Simulator Using Markov Chain Monte Carlo." Working Paper. Available at http:
//imai.princeton.edu/research/files/redist.pdf.

Massey, Douglas and Nancy Denton. (1987) "The Dimensions of Social Segregation". Social
Forces.

Examples

data(fl25_enum)

fl70 Florida 70 Precinct Shape File

Description

This data set contains the 70 Precinct shapefile and related data for each precinct.

Usage

data("fl70")

http://imai.princeton.edu/research/files/redist.pdf
http://imai.princeton.edu/research/files/redist.pdf

freeze 21

Format

sf data.frame containing columns for useful data related to the redistricting process, subsetted from
real data in Florida, and sf geometry column.

geoid Contains unique identifier for each precinct which can be matched to the full Florida dataset.

pop Contains the population of each precinct.

vap Contains the voting age population of each precinct.

obama Contains the 2012 presidential vote for Obama.

mccain Contains the 2012 presidential vote for McCain.

TotPop Contains the population of each precinct. Identical to pop.

BlackPop Contains the black population of each precinct.

HispPop Contains the Hispanic population of each precinct.

VAP Contains the voting age population of each precinct. Identical to vap.

BlackVAP Contains the voting age population of black constituents of each precinct.

HispVAP Contains the voting age population of hispanic constituents of each precinct.

geometry Contains sf geometry of each precinct.

Details

It is a random 70 precinct connected subset from Florida’s precincts. This was introduced by
doi:10.1080/2330443X.2020.1791773

References

Benjamin Fifield, Kosuke Imai, Jun Kawahara & Christopher T. Kenny (2020) The Essential Role
of Empirical Validation in Legislative Redistricting Simulation, Statistics and Public Policy, 7:1,
52-68, doi:10.1080/2330443X.2020.1791773

Examples

data(fl70)

freeze Freeze Parts of a Map

Description

Freeze Parts of a Map

Usage

freeze(freeze_row, plan, .data = cur_map())

redist.freeze(adj, freeze_row, plan = rep(1, length(adj)))

https://doi.org/10.1080/2330443X.2020.1791773

22 get_adj

Arguments

freeze_row Required, logical vector where TRUE freezes and FALSE lets a precinct stay
free or a vector of indices to freeze

plan A vector of district assignments, which if provided will create separate groups
by district. Recommended. In freeze defaults to the existing plan, if one exists.

.data a redist_map object

adj Required, zero indexed adjacency list.

Value

integer vector to group by

Examples

library(redist)
library(dplyr)
data(fl25)
data(fl25_enum)
data(fl25_adj)
plan <- fl25_enum$plans[, 5118]
freeze_id <- redist.freeze(adj = fl25_adj, freeze_row = (plan == 2),

plan = plan)

data(iowa)
map <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.02)
map <- map %>% merge_by(freeze(cd_2010 == 1, .data = .))

get_adj Get and set the adjacency graph from a redist_map object

Description

Get and set the adjacency graph from a redist_map object

Usage

get_adj(x)

set_adj(x, adj)

Arguments

x the redist_map object

adj a new adjacency list.

get_existing 23

Value

a zero-indexed adjacency list (get_adj)

the modified redist_map object (set_adj)

get_existing Extract the existing district assignment from a redist_map object

Description

Extract the existing district assignment from a redist_map object

Usage

get_existing(x)

Arguments

x the redist_map object

Value

an integer vector of district numbers

get_mh_acceptance_rate

Extract the Metropolis Hastings Acceptance Rate

Description

Extract the Metropolis Hastings Acceptance Rate

Usage

get_mh_acceptance_rate(plans)

Arguments

plans the redist_plans object

Value

a numeric acceptance rate

24 get_plans_weights

get_plans_matrix Extract the matrix of district assignments from a redistricting simula-
tion

Description

Extract the matrix of district assignments from a redistricting simulation

Usage

get_plans_matrix(x)

S3 method for class 'redist_plans'
as.matrix(x, ...)

Arguments

x the redist_plans object

... ignored

Value

matrix

matrix

get_plans_weights Extract the sampling weights from a redistricting simulation.

Description

May be NULL if no weights exist (MCMC or optimization methods).

Usage

get_plans_weights(plans)

S3 method for class 'redist_plans'
weights(object, ...)

Arguments

plans, object the redist_plans object

... Ignored.

get_pop_tol 25

Value

A numeric vector of weights, with an additional attribute resampled indicating whether the plans
have been resampled according to these weights. If weights have been resampled, this returns the
weights before resampling (i.e., they do not correspond to the resampled plans).

numeric vector

get_pop_tol Get and set the population tolerance from a redist_map object

Description

Get and set the population tolerance from a redist_map object

Usage

get_pop_tol(map)

set_pop_tol(map, pop_tol)

Arguments

map the redist_map object
pop_tol the population tolerance

Value

For get_pop_tol, a single numeric value, the population tolerance

For seet_pop_tol, an updated redist_map object

get_sampling_info Extract the sampling information from a redistricting simulation

Description

Extract the sampling information from a redistricting simulation

Usage

get_sampling_info(plans)

Arguments

plans the redist_plans object

Value

a list of parameters and information about the sampling problem.

26 group_frac

get_target Extract the target district population from a redist_map object

Description

Extract the target district population from a redist_map object

Usage

get_target(x)

Arguments

x the redist_map object

Value

a single numeric value, the target population

group_frac Calculate Group Proportion by District

Description

redist.group.percent computes the proportion that a group makes up in each district across a
matrix of maps.

Usage

group_frac(
map,
group_pop,
total_pop = map[[attr(map, "pop_col")]],
.data = pl()

)

redist.group.percent(plans, group_pop, total_pop, ncores = 1)

Arguments

map a redist_map object
group_pop A numeric vector with the population of the group for every precinct.
total_pop A numeric vector with the population for every precinct.
.data a redist_plans object or matrix of plans
plans A matrix with one row for each precinct and one column for each map. Re-

quired.
ncores Number of cores to use for parallel computing. Default is 1.

iowa 27

Value

matrix with percent for each district

Examples

data(fl25)
data(fl25_enum)

cd <- fl25_enum$plans[, fl25_enum$pop_dev <= 0.05]
fl25_map = redist_map(fl25, ndists=3, pop_tol=0.1)
fl25_plans = redist_plans(cd, fl25_map, algorithm="enumpart")

group_frac(fl25_map, BlackPop, TotPop, fl25_plans)

iowa Iowa County File

Description

This data contains geographic and demographic information on the 99 counties of the state of Iowa.

Usage

data("iowa")

Format

sf tibble containing columns for useful data related to the redistricting process

fips The FIPS code for the county.

cd_2010 The 2010 congressional district assignments.

pop The total population of the precinct, according to the 2010 Census.

white The non-Hispanic white population of the precinct.

black The non-Hispanic Black population of the precinct.

hisp The Hispanic population (of any race) of the precinct.

vap The voting-age population of the precinct.

wvap The white voting-age population of the precinct.

bvap The Black voting-age population of the precinct.

hvap The Hispanic voting-age population of the precinct.

tot_08 Number of total votes for president in the county in 2008.

dem_08 Number of votes for Barack Obama in 2008.

rep_08 Number of votes for John McCain in 2008.

region The 28E agency regions for counties.

geometry The sf geometry column containing the geographic information.

28 is_county_split

Examples

data(iowa)
print(iowa)

is_contiguous Check that a redist_map object is contiguous

Description

Check that a redist_map object is contiguous

Usage

is_contiguous(x)

Arguments

x the object

Value

TRUE if contiguous.

is_county_split Identify which counties are split by a plan

Description

Identify which counties are split by a plan

Usage

is_county_split(plan, counties)

Arguments

plan A vector of precinct/unit assignments

counties A vector of county names or county ids.

Value

A logical vector which is TRUE for precincts belonging to counties which are split

last_plan 29

last_plan Extract the last plan from a set of plans

Description

Extract the last plan from a set of plans

Usage

last_plan(plans)

Arguments

plans A redist_plans object

Value

An integer vector containing the final plan assignment.

make_cores Identify Cores of a District (Heuristic)

Description

Creates a grouping ID to unite geographies and perform analysis on a smaller set of precincts. It
identifies all precincts more than boundary edges of a district district boundary. Each contiguous
group of precincts more than boundary steps away from another district gets it own group. Some
districts may have multiple, disconnected components that make up the core, but each of these is
assigned a separate grouping id so that a call to sf::st_union() would produce only connected
pieces.

Usage

make_cores(.data = cur_map(), boundary = 1, focus = NULL)

redist.identify.cores(adj, plan, boundary = 1, focus = NULL, simplify = TRUE)

Arguments

.data a redist_map object

boundary Number of steps to check for. Defaults to 1.

focus Optional. Integer. A single district to focus on.

adj zero indexed adjacency list.

plan An integer vector or matrix column of district assignments.

simplify Optional. Logical. Whether to return extra information or just grouping ID.

30 match_numbers

Details

This is a loose interpretation of the NCSL’s summary of redistricting criteria to preserve the cores
of prior districts. Using the adjacency graph for a given plan, it will locate the precincts on the
boundary of the district, within boundary steps of the edge. Each of these is given their own group.
Each remaining entry that is not near the boundary of the district is given an id that can be used to
group the remainder of the district by connected component. This portion is deemed the core of the
district.

Value

integer vector (if simplify is false). Otherwise it returns a tibble with the grouping variable as
group_id and additional information on connected components.

See Also

redist.plot.cores() for a plotting function

Examples

data(fl250)
fl250_map <- redist_map(fl250, ndists = 4, pop_tol = 0.01)
plan <- as.matrix(redist_smc(fl250_map, 20, silent = TRUE))
core <- redist.identify.cores(adj = fl250_map$adj, plan = plan)
redist.plot.cores(shp = fl250, plan = plan, core = core)

match_numbers Renumber districts to match an existing plan

Description

District numbers in simulated plans are by and large random. This function attempts to renumber
the districts across all simulated plans to match the numbers in a provided plan, using the Hungarian
algorithm.

Usage

match_numbers(
data,
plan,
total_pop = attr(data, "prec_pop"),
col = "pop_overlap"

)

https://www.ncsl.org/redistricting-and-census/redistricting-criteria

merge_by 31

Arguments

data a redist_plans object.
plan a character vector giving the name of the plan to match to (e.g., for a reference

plan), or an integer vector containing the plan itself.
total_pop a vector of population counts. Should not be needed for most redist_plans

objects.
col the name of a new column to store the vector of population overlap with the

reference plan: the fraction of the total population who are in the same district
under each plan and the reference plan. Set to NULL if no column should be
created. renumbering options in any plan.

Value

a modified redist_plans object. New district numbers will be stored as an ordered factor variable
in the district column. The district numbers in the plan matrix will match the levels of this factor.

Examples

data(iowa)

iowa_map <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.05)
plans <- redist_smc(iowa_map, 100, silent = TRUE)
match_numbers(plans, "cd_2010")

merge_by Merge map units

Description

In performing a county-level or cores-based analysis it is often necessary to merge several units
together into a larger unit. This function performs this operation, modifying the adjacency graph as
needed and attempting to properly aggregate other data columns.

Usage

merge_by(.data, ..., by_existing = TRUE, drop_geom = TRUE, collapse_chr = TRUE)

Arguments

.data a redist_map object

... <tidy-select> the column(s) to merge by
by_existing if an existing assignment is present, whether to also group by it
drop_geom whether to drop the geometry column. Recommended, as otherwise a costly

geometric merge is required.
collapse_chr if TRUE, preserve character columns by collapsing their values. For example, a

county name column in Iowa might be merged and have entries such as "Cedar~Clinton~Des
Moines". Set to FALSE to drop character columns instead.

32 min_move_parity

Value

A merged redist_map object

min_move_parity Calculates Sparse Population Moves to Minimize Population Devia-
tion

Description

This function computes a minimal set of population moves (e.g., 5 people from district 1 to district
3) to maximally balance the population between districts. The moves are only allowed between
districts that share the territory of a county, so that any boundary adjustments are guaranteed to
preserve all unbroken county boundaries.

Usage

min_move_parity(map, plan, counties = NULL, penalty = 0.2)

Arguments

map a redist_map

plan an integer vector containing the plan to be balanced. Tidy-evaluated.

counties an optional vector of counties, whose boundaries will be preserved. Tidy-evaluated.

penalty the larger this value, the more to encourage sparsity.

Value

a list with components:

moves A tibble describing the population moves

pop_old The current district populations

pop_new The district populations after the moves

Examples

data(iowa)
iowa_map <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.01)
min_move_parity(iowa_map, cd_2010)

muni_splits 33

muni_splits Counts the Number of Municipalities Split Between Districts

Description

Counts the total number of municpalities that are split. Municipalities in this interpretation do not
need to cover the entire state, which differs from counties.

Usage

muni_splits(map, munis, .data = cur_plans())

redist.muni.splits(plans, munis)

Arguments

map a redist_map object

munis A vector of municipality names or ids.

.data a redist_plans object

plans A numeric vector (if only one map) or matrix with one row for each precinct
and one column for each map. Required.

Value

integer vector of length ndist by ncol(plans)

Examples

data(iowa)
ia <- redist_map(iowa, existing_plan = cd_2010, total_pop = pop, pop_tol = 0.01)
plans <- redist_smc(ia, 50, silent = TRUE)
ia$region[1:10] <- NA
#old redist.muni.splits(plans, ia$region)
splits_sub_admin(plans, ia, region)

number_by Renumber districts to match a quantity of interest

Description

District numbers in simulated plans are by and large random. This function will renumber the
districts across all simulated plans in order of a provided quantity of interest.

Usage

number_by(data, x, desc = FALSE)

34 partisan_metrics

Arguments

data a redist_plans object

x <data-masking> the quantity of interest.

desc TRUE if district should be sorted in descending order.

Value

a modified redist_plans object. New district numbers will be stored as an ordered factor variable
in the district column. The district numbers in the plan matrix will match the levels of this factor.

partisan_metrics Calculate gerrymandering metrics for a set of plans

Description

redist.metrics is used to compute different gerrymandering metrics for a set of maps.

Usage

partisan_metrics(map, measure, rvote, dvote, ..., .data = cur_plans())

redist.metrics(
plans,
measure = "DSeats",
rvote,
dvote,
tau = 1,
biasV = 0.5,
respV = 0.5,
bandwidth = 0.01,
draw = 1

)

Arguments

map a redist_map object

measure A vector with a string for each measure desired from list "DSeats", "DVS", "Ef-
fGap", "EffGapEqPop", "TauGap", "MeanMedian", "Bias", "BiasV", "Declina-
tion", "Responsiveness", "LopsidedWins", "RankedMarginal", and "Smoothed-
Seat". Use "all" to get all metrics. "DSeats" and "DVS" are always computed,
so it is recommended to always return those values.

rvote A numeric vector with the Republican vote for each precinct.

dvote A numeric vector with the Democratic vote for each precinct.

... passed on to redist.metrics

.data a redist_plans object

partisan_metrics 35

plans A numeric vector (if only one map) or matrix with one row for each precinct
and one column for each map. Required.

tau A non-negative number for calculating Tau Gap. Only used with option "Tau-
Gap". Defaults to 1.

biasV A value between 0 and 1 to compute bias at. Only used with option "BiasV".
Defaults to 0.5.

respV A value between 0 and 1 to compute responsiveness at. Only used with option
"Responsiveness". Defaults to 0.5.

bandwidth A value between 0 and 1 for computing responsiveness. Only used with option
"Responsiveness." Defaults to 0.01.

draw A numeric to specify draw number. Defaults to 1 if only one map provided and
the column number if multiple maps given. Can also take a factor input, which
will become the draw column in the output if its length matches the number of
entries in plans. If the plans input is a redist_plans object, it extracts the
draw identifier.

Details

This function computes specified compactness scores for a map. If there is more than one precinct
specified for a map, it aggregates to the district level and computes one score.

• DSeats is computed as the expected number of Democratic seats with no change in votes.

• DVS is the Democratic Vote Share, which is the two party vote share with Democratic votes
as the numerator.

• EffGap is the Efficiency Gap, calculated with votes directly.

• EffGapEqPop is the Efficiency Gap under an Equal Population assumption, calculated with
the DVS.

• TauGap is the Tau Gap, computed with the Equal Population assumption.

• MeanMedian is the Mean Median difference.

• Bias is the Partisan Bias computed at 0.5.

• BiasV is the Partisan Bias computed at value V.

• Declination is the value of declination at 0.5.

• Responsiveness is the responsiveness at the user-supplied value with the user-supplied band-
width.

• LopsidedWins computed the Lopsided Outcomes value, but does not produce a test statistic.

• RankedMarginal computes the Ranked Marginal Deviation (0-1, smaller is better). This is
also known as the "Gerrymandering Index" and is sometimes presented as this value divided
by 10000.

• SmoothedSeat computes the Smoothed Seat Count Deviation (0-1, smaller is R Bias, bigger
is D Bias).

Value

A tibble with a column for each specified measure and a column that specifies the map number.

36 pl

References

Jonathan N. Katz, Gary King, and Elizabeth Rosenblatt. 2020. Theoretical Foundations and Em-
pirical Evaluations of Partisan Fairness in District-Based Democracies. American Political Science
Review, 114, 1, Pp. 164-178.

Gregory S. Warrington. 2018. "Quantifying Gerrymandering Using the Vote Distribution." Election
Law Journal: Rules, Politics, and Policy. Pp. 39-57.http://doi.org/10.1089/elj.2017.0447

Samuel S.-H. Wang. 2016. "Three Tests for Practical Evaluation of Partisan Gerrymandering."
Stanford Law Review, 68, Pp. 1263 - 1321.

Gregory Herschlag, Han Sung Kang, Justin Luo, Christy Vaughn Graves, Sachet Bangia, Robert
Ravier & Jonathan C. Mattingly (2020) Quantifying Gerrymandering in North Carolina, Statistics
and Public Policy, 7:1, 30-38, DOI: 10.1080/2330443X.2020.1796400

Examples

data(fl25)
data(fl25_enum)
plans_05 <- fl25_enum$plans[, fl25_enum$pop_dev <= 0.05]
old: redist.metrics(plans_05, measure = "DSeats", rvote = fl25$mccain, dvote = fl25$obama)
part_dseats(plans_05, fl25, mccain, obama)

pl Access the Current redist_plans() Object

Description

Useful inside piped expressions and dplyr functions.

Usage

pl()

Value

A redist_plans object, or NULL if not called from inside a dplyr function.

Examples

pl()

plans_diversity 37

plans_diversity Calculate the diversity of a set of plans

Description

Returns the off-diagonal elements of the variation of information distance matrix for a sample of
plans, which can be used as a diagnostic measure to assess the diversity of a set of plans. While the
exact scale varies depending on the number of precincts and districts, generally diversity is good if
most of the values are greater than 0.5. Conversely, if there are many values close to zero, then the
sample has many similar plans and may not be a good approximation to the target distribution.

Usage

plans_diversity(
plans,
chains = 1,
n_max = 100,
ncores = 1,
total_pop = attr(plans, "prec_pop")

)

Arguments

plans a redist_plans object.

chains For plans objects with multiple chains, which ones to compute diversity for.
Defaults to the first. Specify "all" to use all chains.

n_max the maximum number of plans to sample in computing the distances. Larger
numbers will have less sampling error but will require more computation time.

ncores the number of cores to use in computing the distances.

total_pop The vector of precinct populations. Used only if computing variation of infor-
mation. If not provided, equal population of precincts will be assumed, i.e. the
VI will be computed with respect to the precincts themselves, and not the popu-
lation.

Value

A numeric vector of off-diagonal variation of information distances.

Examples

data(iowa)
ia <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.01)
plans <- redist_smc(ia, 100, silent = TRUE)
hist(plans_diversity(plans))

38 plan_distances

plan_distances Compute Distance between Partitions

Description

Compute Distance between Partitions

Usage

plan_distances(plans, measure = "variation of information", ncores = 1)

redist.distances(plans, measure = "Hamming", ncores = 1, total_pop = NULL)

Arguments

plans A matrix with one row for each precinct and one column for each map. Re-
quired.

measure String vector indicating which distances to compute. Implemented currently
are "Hamming", "Manhattan", "Euclidean", and "variation of information", Use
"all" to return all implemented measures. Not case sensitive, and any unique
substring is enough, e.g. "ham" for Hamming, or "info" for variation of infor-
mation.

ncores Number of cores to use for parallel computing. Default is 1.

total_pop The vector of precinct populations. Used only if computing variation of infor-
mation. If not provided, equal population of precincts will be assumed, i.e. the
VI will be computed with respect to the precincts themselves, and not the popu-
lation.

Details

Hamming distance measures the number of different precinct assignments between plans. Man-
hattan and Euclidean distances are the 1- and 2-norms for the assignment vectors. All three of the
Hamming, Manhattan, and Euclidean distances implemented here are not invariant to permutations
of the district labels; permuting will cause large changes in measured distance, and maps which are
identical up to a permutation may be computed to be maximally distant.

Variation of Information is a metric on population partitions (i.e., districtings) which is invariant to
permutations of the district labels, and arises out of information theory. It is calculated as

V I(ξ, ξ′) = −
n∑

i=1

n∑
j=1

pop(ξi ∩ ξ′j)/P (2log(pop(ξi ∩ ξ′j))− log(pop(ξi))− log(pop(ξ′j)))

where ξ, ξ′ are the partitions, ξi, ξj the individual districts, pop(·) is the population, and P the total
population of the state. VI is also expressible as the difference between the joint entropy and the
mutual information (see references).

plot.redist_classified 39

Value

distance_matrix returns a numeric distance matrix for the chosen metric.

a named list of distance matrices, one for each distance measure selected.

References

Cover, T. M. and Thomas, J. A. (2006). Elements of information theory. John Wiley & Sons, 2
edition.

Examples

data(fl25)
data(fl25_enum)

plans_05 <- fl25_enum$plans[, fl25_enum$pop_dev <= 0.05]
distances <- redist.distances(plans_05)
distances$Hamming[1:5, 1:5]

plot.redist_classified

Plot a plan classification

Description

Plot a plan classification

Usage

S3 method for class 'redist_classified'
plot(x, plans, shp, type = "fill", which = NULL, ...)

Arguments

x a redist_classified object, the output of classify_plans().

plans a redist_plans object.

shp a shapefile or redist_map object.

type either "line" or "fill". Passed on to compare_plans() as plot.

which indices of the splits to plot. Defaults to all

... passed on to compare_plans()

Value

ggplot comparison plot

40 plot.redist_constr

plot.redist_constr Visualize constraints

Description

Plots the constraint strength versus some running variable. Currently supports visualizing the
grp_hinge, grp_inv_hinge, and grp_pow constraints.

Usage

S3 method for class 'redist_constr'
plot(x, y, type = "group", xlim = c(0, 1), ...)

Arguments

x A redist_constr object.

y Ignored.

type What type of constraint to visualize. Currently supports only "group", for visu-
alizing constraint strength by group share.

xlim Range of group shares to visualize.

... additional arguments (ignored)

Value

A ggplot object

Examples

data(iowa)
iowa_map <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.05)
constr <- redist_constr(iowa_map)
constr <- add_constr_grp_hinge(constr, strength = 30,

dem_08, tot_08, tgts_group = 0.5)
constr <- add_constr_grp_hinge(constr, strength = -20,

dem_08, tot_08, tgts_group = 0.3)
plot(constr)

plot.redist_map 41

plot.redist_map Plot a redist_map

Description

Plot a redist_map

Usage

S3 method for class 'redist_map'
plot(x, fill = NULL, by_distr = FALSE, adj = FALSE, ...)

Arguments

x the redist_map object

fill <data-masking> If present, will be used to color the map units. If using data
masking, may need to explicitly name argument fill=... in non-interactive
contexts to avoid S3 generic issues.

by_distr if TRUE and fill is not missing and, color by district and indicate the fill
variable by shading.

adj if TRUE, force plotting the adjacency graph. Overrides by_distr.

... passed on to redist.plot.map (or redist.plot.adj if adj=TRUE). Useful pa-
rameters may include zoom_to, boundaries, and title.

Value

ggplot2 object

Examples

data(fl25)
d <- redist_map(fl25, ndists = 3, pop_tol = 0.05)
plot(d)
plot(d, BlackPop/pop)

data(fl25_enum)
fl25$dist <- fl25_enum$plans[, 5118]
d <- redist_map(fl25, existing_plan = dist)
plot(d)

42 prec_assignment

plot.redist_plans Summary plots for \link{redist_plans}

Description

If no arguments are passed, defaults to plotting the sampling weights for the redist_plans object.
If no weights exist, plots district populations.

Usage

S3 method for class 'redist_plans'
plot(x, ..., type = "distr_qtys")

Arguments

x the redist_plans object.

... passed on to the underlying function

type the name of the plotting function to use. Will have redist.plot., prepended
to it; e.g., use type="plans" to call redist.plot.plans.

prec_assignment Extract the district assignments for a precinct across all simulated
plans

Description

Extract the district assignments for a precinct across all simulated plans

Usage

prec_assignment(prec, .data = pl())

Arguments

prec the precinct number

.data a redist_plans object

Value

integer vector, a row from a plans matrix

prec_cooccurrence 43

prec_cooccurrence Compute a matrix of precinct co-occurrences

Description

For a map with n precincts Returns an n-by-n matrix, where each entry measures the fraction of the
plans in which the row and column precincts were in the same district.

Usage

prec_cooccurrence(plans, which = NULL, sampled_only = TRUE, ncores = 1)

Arguments

plans a redist_plans object.

which <data-masking> which plans to compute the co-occurrence over. Defaults to
all.

sampled_only if TRUE, do not include reference plans.

ncores the number of parallel cores to use in the computation.

Value

a symmetric matrix the size of the number of precincts.

print.redist_classified

Print redist_classified objects

Description

Print redist_classified objects

Usage

S3 method for class 'redist_classified'
print(x, ...)

Arguments

x redist_classified object

... additional arguments

Value

prints to console

44 print.redist_map

print.redist_constr Generic to print redist_constr

Description

Generic to print redist_constr

Usage

S3 method for class 'redist_constr'
print(x, header = TRUE, details = TRUE, ...)

Arguments

x redist_constr

header if FALSE, then suppress introduction / header line

details if FALSE, then suppress the details of each constraint

... additional arguments

Value

Prints to console and returns input redist_constr

print.redist_map Generic to print redist_map

Description

Generic to print redist_map

Usage

S3 method for class 'redist_map'
print(x, ...)

Arguments

x redist_map

... additional arguments

Value

Prints to console and returns input redist_map

print.redist_plans 45

print.redist_plans Print method for redist_plans

Description

Print method for redist_plans

Usage

S3 method for class 'redist_plans'
print(x, ...)

Arguments

x a redist_plans object

... additional arguments (ignored)

Value

The original object, invisibly.

proj Calculate Projective Distributions, Averages, and Contrasts for a
Summary Statistic

Description

The projective distribution of a district-level summary statistic (McCartan 2024) is the distribution
of values of that statistic across a set of plans for the district each precinct belongs to. The projective
average of a statistic is the average value of the projective distribution in each precinct. A projective
contrast is the difference between the projective average for a single plan and the projective average
for an ensemble of sampled plans.

It is very important to properly account for variation in the projective distribution when looking at
projective contrasts. The pfdr argument to proj_contr() will calculate q-values for each precinct
that can be used to control the positive false discovery rate (pFDR) to avoid being misled by this
variation. See redist.plot.contr_pfdr() for a way to automatically plot projective contrasts
with this false discovery rate control.

Usage

proj_distr(plans, x, draws = NA)

proj_avg(plans, x, draws = NA)

proj_contr(plans, x, compare = NA, draws = NA, norm = FALSE, pfdr = FALSE)

46 proj

Arguments

plans A redist_plans object.

x A district-level summary statistic calculated from the plans object. Tidy-evaluated
in plans.

draws which draws/samples to include in the projective distribution. NULL will include
all draws, including reference plans. The special value NA will include all sam-
pled (non-reference) draws. An integer, logical, or character vector indicating
specific draws may also be provided.

compare The plan to compare to the rest of the ensemble (which is controlled by draws).
Defaults to the first reference plan, if any exists

norm If TRUE, normalize the contrast by the standard deviation of the projective dis-
tribution, precinct-wise. This will make the projective contrast in terms of z-
scores.

pfdr If TRUE, calculate q-values for each precinct that can be used to control the pos-
itive false discovery rate (pFDR) at a given level by thresholding the q-values
at that level. Q-values are stored as the "q" attribute on the returned vector.
Requires the matrixStats package be installed.

Value

proj_distr: A matrix with a row for each precinct (row in the map object) and a column for every
draw described by draws.

proj_avg: A numeric vector of length matching the number of precincts.

proj_contr: A numeric vector of length matching the number of precincts, optionally with a "q"
attribute containing q-values.

References

McCartan, C. (2024). Projective Averages for Summarizing Redistricting Ensembles. arXiv preprint.
Available at https://arxiv.org/abs/.

Examples

data(iowa)
map <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.01)
plans <- redist_smc(map, 50, silent = TRUE)
plans$dem <- group_frac(map, dem_08, tot_08, plans)

proj_distr(plans, dem) # a 99-by-50 matrix
plot(map, proj_avg(plans, dem))
plot(map, proj_contr(plans, dem))
plot(map, proj_contr(plans, dem, comp="cd_2010"))

https://arxiv.org/abs/

pullback 47

pullback Pull back plans to unmerged units

Description

Merging map units through merge_by or summarize changes the indexing of each unit. Use this
function to take a set of redistricting plans from a redist algorithm and re-index them to be com-
patible with the original set of units.

Usage

pullback(plans, map = NULL)

Arguments

plans a redist_plans object
map optionally, a redist_map object, which will be used to set the new population

vector

Value

a new, re-indexed, redist_plans object

rbind.redist_plans Combine multiple sets of redistricting plans

Description

Only works when all the sets are compatible—generated from the same map, with the same number
of districts. Sets of plans will be indexed by the chain column.

Usage

S3 method for class 'redist_plans'
rbind(..., deparse.level = 1)

Arguments

... The redist_plans objects to combine. If named arguments are provided, the
names will be used in the chain column; otherwise, numbers will be used for
the chain column.

deparse.level Ignored.

Value

A new redist_plans object.

48 redist.calc.frontier.size

redist.adjacency Adjacency List functionality for redist

Description

Creates an adjacency list that is zero indexed with no skips

Usage

redist.adjacency(shp, plan)

Arguments

shp A SpatialPolygonsDataFrame or sf object. Required.

plan A numeric vector (if only one map) or matrix with one row

Value

Adjacency list

redist.calc.frontier.size

Calculate Frontier Size

Description

Calculate Frontier Size

Usage

redist.calc.frontier.size(ordered_path)

Arguments

ordered_path path to ordered path created by redist.prep.enumpart

Value

List, four objects

• max numeric, maximum frontier size

• average numeric, average frontier size

• average_sq numeric, average((frontier size)^2)

• sequence numeric vector, lists out all sizes for every frontier

redist.coarsen.adjacency 49

Examples

Not run:
data(fl25)
adj <- redist.adjacency(fl25)
redist.prep.enumpart(adj, "unordered", "ordered")
redist.calc.frontier.size("ordered")

End(Not run)

redist.coarsen.adjacency

Coarsen Adjacency List

Description

Coarsen Adjacency List

Usage

redist.coarsen.adjacency(adj, groups)

Arguments

adj A zero-indexed adjacency list. Required.

groups integer vector of elements of adjacency to group

Value

adjacency list coarsened

redist.combine.mpi Combine successive runs of redist.mcmc.mpi

Description

redist.combine.mpi is used to combine successive runs of redist.mcmc.mpi into a single data
object

Usage

redist.combine.mpi(savename, nloop, nthin, tempadj)

50 redist.combine.mpi

Arguments

savename The name (without the loop or .RData suffix) of the saved simulations.

nloop The number of loops being combined.

nthin How much to thin the simulations being combined.

tempadj The temperature adjacency object saved by redist.mcmc.mpi.

Details

This function allows users to combine multiple successive runs of redist.mcmc.mpi into a single
redist object for analysis.

Value

redist.combine.mpi returns an object of class "redist". The object redist is a list that contains
the following components (the inclusion of some components is dependent on whether tempering
techniques are used):

plans Matrix of congressional district assignments generated by the algorithm. Each
row corresponds to a geographic unit, and each column corresponds to a simu-
lation.

distance_parity

Vector containing the maximum distance from parity for a particular simulated
redistricting plan.

mhdecisions A vector specifying whether a proposed redistricting plan was accepted (1) or
rejected (0) in a given iteration.

mhprob A vector containing the Metropolis-Hastings acceptance probability for each
iteration of the algorithm.

pparam A vector containing the draw of the p parameter for each simulation, which
dictates the number of swaps attempted.

constraint_pop A vector containing the value of the population constraint for each accepted
redistricting plan.

constraint_compact

A vector containing the value of the compactness constraint for each accepted
redistricting plan.

constraint_vra A vector containing the value of the vra constraint for each accepted redistricting
plan.

constraint_similar

A vector containing the value of the similarity constraint for each accepted re-
districting plan.

constraint_qps A vector containing the value of the QPS constraint for each accepted redistrict-
ing plan.

beta_sequence A vector containing the value of beta for each iteration of the algorithm. Re-
turned when tempering is being used.

mhdecisions_beta

A vector specifying whether a proposed beta value was accepted (1) or rejected
(0) in a given iteration of the algorithm. Returned when tempering is being used.

redist.constraint.helper 51

mhprob_beta A vector containing the Metropolis-Hastings acceptance probability for each
iteration of the algorithm. Returned when tempering is being used.

References

Fifield, Benjamin, Michael Higgins, Kosuke Imai and Alexander Tarr. (2016) "A New Automated
Redistricting Simulator Using Markov Chain Monte Carlo." Working Paper. Available at http:
//imai.princeton.edu/research/files/redist.pdf.

Examples

Not run:
Cannot run on machines without Rmpi
data(fl25)
data(fl25_enum)
data(fl25_adj)

Code to run the simulations in Figure 4 in Fifield, Higgins, Imai and
Tarr (2015)

Get an initial partition
init_plan <- fl25_enum$plans[, 5118]

Run the algorithm
redist.mcmc.mpi(adj = fl25_adj, total_pop = fl25$pop,

init_plan = init_plan, nsims = 10000, nloops = 2, savename = "test")
out <- redist.combine.mpi(savename = "test", nloop = 2,

nthin = 10, tempadj = tempAdjMat)

End(Not run)

redist.constraint.helper

Create Constraints for SMC

Description

Create Constraints for SMC

Usage

redist.constraint.helper(
constraints = "vra",
tgt_min = 0.55,
group_pop,
total_pop,
ndists,
nmmd,
strength_vra = 2500,

http://imai.princeton.edu/research/files/redist.pdf
http://imai.princeton.edu/research/files/redist.pdf

52 redist.county.id

pow_vra = 1.5
)

Arguments

constraints Vector of constraints to include. Currently only ’vra’ implemented.

tgt_min Defaults to 0.55. If ’vra’ included, the minority percent to encourage in each
district.

group_pop A vector of populations for some subgroup of interest.

total_pop A vector containing the populations of each geographic unit.

ndists The total number of districts.

nmmd The number of majority minority districts to target for ’vra’ constraint

strength_vra The strength of the ’vra’ constraint. Defaults to 2500.

pow_vra The exponent for the ’vra’ constraint. Defaults to 1.5.

Value

list of lists for each constraint selected

redist.county.id Create County IDs

Description

Create County IDs

Usage

redist.county.id(counties)

Arguments

counties vector of counties, required.

Value

A vector with an ID that corresponds from 1:n counties

Examples

set.seed(2)
counties <- sample(c(rep("a", 20), rep("b", 5)))
redist.county.id(counties)

redist.county.relabel 53

redist.county.relabel Relabel Discontinuous Counties

Description

Relabel Discontinuous Counties

Usage

redist.county.relabel(adj, counties, simplify = TRUE)

Arguments

adj adjacency list

counties character vector of county names

simplify boolean - TRUE returns a numeric vector of ids, while FALSE appends a number
when there are multiple connected components.

Value

character vector of county names

Examples

set.seed(2)
data(fl25)
data(fl25_adj)
counties <- sample(c(rep("a", 20), rep("b", 5)))
redist.county.relabel(fl25_adj, counties)

redist.crsg Redistricting via Compact Random Seed and Grow Algorithm

Description

redist.crsg generates redistricting plans using a random seed a grow algorithm. This is the com-
pact districting algorithm described in Chen and Rodden (2013).

54 redist.crsg

Usage

redist.crsg(
adj,
total_pop,
shp,
ndists,
pop_tol,
verbose = TRUE,
maxiter = 5000

)

Arguments

adj List of length N, where N is the number of precincts. Each list element is an in-
teger vector indicating which precincts that precinct is adjacent to. It is assumed
that precinct numbers start at 0.

total_pop numeric vector of length N, where N is the number of precincts. Each element
lists the population total of the corresponding precinct, and is used to enforce
pop_tol constraints.

shp An sf dataframe to compute area and centroids with.

ndists integer, the number of districts we want to partition the precincts into.

pop_tol numeric, indicating how close district population targets have to be to the target
population before algorithm converges. pop_tol=0.05 for example means that all
districts must be between 0.95 and 1.05 times the size of target.pop in population
size.

verbose boolean, indicating whether the time to run the algorithm is printed.

maxiter integer, indicating maximum number of iterations to attempt before convergence
to population constraint fails. If it fails once, it will use a different set of start
values and try again. If it fails again, redist.rsg() returns an object of all NAs,
indicating that use of more iterations may be advised. Default is 5000.

Value

list, containing three objects containing the completed redistricting plan.

• plan: A vector of length N, indicating the district membership of each precinct.

• district_list A list of length Ndistrict. Each list contains a vector of the precincts in the
respective district.

• district_pop A vector of length Ndistrict, containing the population totals of the respective
districts.

References

Jowei Chen and Jonathan Rodden (2013) “Unintentional Gerrymandering: Political Geography and
Electoral Bias in Legislatures.” Quarterly Journal of Political Science. 8(3): 239-269.

redist.diagplot 55

Examples

data("fl25")
adj <- redist.adjacency(fl25)
redist.crsg(adj = adj, total_pop = fl25$pop, shp = fl25, ndists = 2, pop_tol = .1)

redist.diagplot Diagnostic plotting functionality for MCMC redistricting.

Description

redist.diagplot generates several common MCMC diagnostic plots.

Usage

redist.diagplot(sumstat,
plot = c("trace", "autocorr", "densplot", "mean", "gelmanrubin"),
logit = FALSE, savename = NULL)

Arguments

sumstat A vector, list, mcmc or mcmc.list object containing a summary statistic of
choice.

plot The type of diagnostic plot to generate: one of "trace", "autocorr", "densplot",
"mean", "gelmanrubin". If plot = "gelmanrubin", the input sumstat must be
of class mcmc.list or list.

logit Flag for whether to apply the logistic transformation for the summary statistic.
The default is FALSE.

savename Filename to save the plot. Default is NULL.

Details

This function allows users to generate several standard diagnostic plots from the MCMC litera-
ture, as implemented by Plummer et. al (2006). Diagnostic plots implemented include trace plots,
autocorrelation plots, density plots, running means, and Gelman-Rubin convergence diagnostics
(Gelman & Rubin 1992).

Value

Returns a plot of file type .pdf.

56 redist.diagplot

References

Fifield, Benjamin, Michael Higgins, Kosuke Imai and Alexander Tarr. (2016) "A New Automated
Redistricting Simulator Using Markov Chain Monte Carlo." Working Paper. Available at http:
//imai.princeton.edu/research/files/redist.pdf.

Gelman, Andrew and Donald Rubin. (1992) "Inference from iterative simulations using multiple
sequences (with discussion)." Statistical Science.

Plummer, Martin, Nicky Best, Kate Cowles and Karen Vines. (2006) "CODA: Convergence Diag-
nosis and Output Analysis for MCMC." R News.

Examples

data(fl25)
data(fl25_enum)
data(fl25_adj)

Get an initial partition
init_plan <- fl25_enum$plans[, 5118]
fl25$init_plan <- init_plan

25 precinct, three districts - no pop constraint
fl_map <- redist_map(fl25, existing_plan = 'init_plan', adj = fl25_adj)
alg_253 <- redist_flip(fl_map, nsims = 10000)

Get Republican Dissimilarity Index from simulations
rep_dmi_253 <- redistmetrics::seg_dissim(alg_253, fl25, mccain, pop) |>

redistmetrics::by_plan(ndists = 3)

Generate diagnostic plots
redist.diagplot(rep_dmi_253, plot = "trace")
redist.diagplot(rep_dmi_253, plot = "autocorr")
redist.diagplot(rep_dmi_253, plot = "densplot")
redist.diagplot(rep_dmi_253, plot = "mean")

Gelman Rubin needs two chains, so we run a second
alg_253_2 <- redist_flip(fl_map, nsims = 10000)

rep_dmi_253_2 <- redistmetrics::seg_dissim(alg_253_2, fl25, mccain, pop) |>
redistmetrics::by_plan(ndists = 3)

Make a list out of the objects:
rep_dmi_253_list <- list(rep_dmi_253, rep_dmi_253_2)

Generate Gelman Rubin diagnostic plot
redist.diagplot(sumstat = rep_dmi_253_list, plot = "gelmanrubin")

http://imai.princeton.edu/research/files/redist.pdf
http://imai.princeton.edu/research/files/redist.pdf

redist.dist.pop.overlap 57

redist.dist.pop.overlap

Compare the Population Overlap Across Plans at the District Level

Description

This implements Crespin’s 2005 measure of district continuity, as applied to the geographies repre-
sented by a plan, typically precincts or voting districts. This implementation assumes none of the
precincts in plan_old or plan_new are split.

Usage

redist.dist.pop.overlap(plan_old, plan_new, total_pop, normalize_rows = TRUE)

Arguments

plan_old The reference or original plan to compare against

plan_new The new plan to compare to the reference plan

total_pop The total population by precinct This can also take a redist_map object and will
use the population in that object. If nothing is provided, it weights all entries in
plan equally.

normalize_rows Default TRUE. Normalize populations by row. If FALSE, normalizes by col-
umn. If NULL, does not normalize.

Value

matrix with length(unique(plan_old)) rows and length(unique(plan_new)) columns

References

"Using Geographic Information Systems to Measure District Change, 2000-02", Michael Crespin,
Political Analysis (2005) 13(3): 253-260

Examples

set.seed(5)
data(iowa)
iowa_map <- redist_map(iowa, total_pop = pop, pop_tol = 0.01, ndists = 4)
plans <- redist_smc(iowa_map, 2)
plans_mat <- get_plans_matrix(plans)
ov <- redist.dist.pop.overlap(plans_mat[, 1], plans_mat[, 2], iowa_map)
round(ov, 2)

ov_col <- redist.dist.pop.overlap(plans_mat[, 1], plans_mat[, 2], iowa_map, normalize_rows = FALSE)
round(ov_col, 2)

ov_un_norm <- redist.dist.pop.overlap(plans_mat[, 1], plans_mat[, 2],
iowa_map, normalize_rows = NULL)

58 redist.district.splits

round(ov_un_norm, 2)

iowa_map_5 <- iowa_map <- redist_map(iowa, total_pop = pop, pop_tol = 0.01, ndists = 5)
plan_5 <- get_plans_matrix(redist_smc(iowa_map_5, 1))
ov4_5 <- redist.dist.pop.overlap(plans_mat[, 1], plan_5, iowa_map)
round(ov4_5, 2)

redist.district.splits

Counts the Number of Counties within a District

Description

Counts the total number of counties that are found within a district. This does not subtract out the
number of counties that are found completely within a district.

Usage

redist.district.splits(plans, counties)

Arguments

plans A numeric vector (if only one map) or matrix with one row for each precinct
and one column for each map. Required.

counties A vector of county names or county ids.

Value

integer matrix where each district is a

Examples

data(iowa)
ia <- redist_map(iowa, existing_plan = cd_2010, total_pop = pop, pop_tol = 0.01)
plans <- redist_smc(ia, 50, silent = TRUE)
#old redist.district.splits(plans, ia$region)
splits_count(plans, ia, region)

redist.enumpart 59

redist.enumpart Enumerate All Parititions (Fifield et al. 2020)

Description

Single function for standard enumeration analysis, using ZDD methodology (Fifield, Imai, Kawa-
hara, and Kenny 2020).

Usage

redist.enumpart(
adj,
unordered_path,
ordered_path,
out_path,
ndists = 2,
all = TRUE,
n = NULL,
weight_path = NULL,
lower = NULL,
upper = NULL,
init = FALSE,
read = TRUE,
total_pop = NULL

)

Arguments

adj zero indexed adjacency list.

unordered_path valid path to output the unordered adjacency map to

ordered_path valid path to output the ordered adjacency map to

out_path Valid path to output the enumerated districts

ndists number of districts to enumerate

all boolean. TRUE outputs all districts. FALSE samples n districts.

n integer. Number of districts to output if all is FALSE. Returns districts selected
from uniform random distribution.

weight_path A path (not including ".dat") to a space-delimited file containing a vector of
vertex weights, to be used along with lower and upper.

lower A lower bound on each partition’s total weight, implemented by rejection sam-
pling.

upper An upper bound on each partition’s total weight.

init Runs redist.init.enumpart. Defaults to false. Should be run on first use.

read boolean. Defaults to TRUE. reads

total_pop the vector of precinct populations

60 redist.findparams

Value

List with entries district_membership and parity.

References

Fifield, B., Imai, K., Kawahara, J., & Kenny, C. T. (2020). The essential role of empirical validation
in legislative redistricting simulation. Statistics and Public Policy, 7(1), 52-68.

redist.find.target Find Majority Minority Remainder

Description

Given a percent goal for majority minority districts, this computes the average value of minority in
non-majority minority districts. This value is "tgt_other" in redist_flip and redist_smc.

Usage

redist.find.target(tgt_min, group_pop, total_pop, ndists, nmmd)

Arguments

tgt_min target group population for majority minority district

group_pop A vector of populations for some subgroup of interest.

total_pop A vector containing the populations of each geographic unit.

ndists The number of congressional districts.

nmmd The number of majority minority districts.

Value

numeric value to target

redist.findparams Run parameter testing for redist_flip

Description

redist.findparams is used to find optimal parameter values of redist_flip for a given map.

redist.findparams 61

Usage

redist.findparams(
map,
nsims,
init_plan = NULL,
adapt_lambda = FALSE,
adapt_eprob = FALSE,
params,
ssdmat = NULL,
group_pop = NULL,
counties = NULL,
nstartval_store = 1,
maxdist_startval = 100,
maxiterrsg = 5000,
report_all = TRUE,
parallel = FALSE,
ncores = NULL,
log = FALSE,
verbose = TRUE

)

Arguments

map A redist_map object.

nsims The number of simulations run before a save point.

init_plan A vector containing the congressional district labels of each geographic unit.
The default is NULL. If not provided, random and contiguous congressional dis-
trict assignments will be generated using redist.rsg.

adapt_lambda Whether to adaptively tune the lambda parameter so that the Metropolis-Hastings
acceptance probability falls between 20% and 40%. Default is FALSE.

adapt_eprob Whether to adaptively tune the edgecut probability parameter so that the Metropolis-
Hastings acceptance probability falls between 20% and 40%. Default is FALSE.

params A matrix of parameter values to test, such as the output of expand.grid. Param-
eters accepted for params include eprob, lambda, pop_tol, beta, and constraint.

ssdmat A matrix of squared distances between geographic units. The default is NULL.

group_pop A vector of populations for some sub-group of interest. The default is NULL.

counties A vector of county membership assignments. The default is NULL.
nstartval_store

The number of maps to sample from the preprocessing chain for use as starting
values in future simulations. Default is 1.

maxdist_startval

The maximum distance from the starting map that sampled maps should be.
Default is 100 (no restriction).

maxiterrsg Maximum number of iterations for random seed-and-grow algorithm to generate
starting values. Default is 5000.

62 redist.findparams

report_all Whether to report all summary statistics for each set of parameter values. De-
fault is TRUE.

parallel Whether to run separate parameter settings in parallel. Default is FALSE.

ncores Number of parallel tasks to run, declared outside of the function. Default is
NULL.

log Whether to open a log to track progress for each parameter combination being
tested. Default is FALSE.

verbose Whether to print additional information about the tests. Default is TRUE.

Details

This function allows users to test multiple parameter settings of redist_flip in preparation for a
longer run for analysis.

Value

redist.findparams returns a print-out of summary statistics about each parameter setting.

References

Fifield, Benjamin, Michael Higgins, Kosuke Imai and Alexander Tarr. (2016) "A New Automated
Redistricting Simulator Using Markov Chain Monte Carlo." Working Paper. Available at http:
//imai.princeton.edu/research/files/redist.pdf.

Examples

data(fl25)
data(fl25_enum)
data(fl25_adj)

Get an initial partition
init_plan <- fl25_enum$plans[, 5118]

params <- expand.grid(eprob = c(.01, .05, .1))

Make map
map_fl <- redist_map(fl25, ndists = 3, pop_tol = 0.2)
Run the algorithm
redist.findparams(map_fl,

init_plan = init_plan, nsims = 10000, params = params)

http://imai.princeton.edu/research/files/redist.pdf
http://imai.princeton.edu/research/files/redist.pdf

redist.init.enumpart 63

redist.init.enumpart Initialize enumpart

Description

This ensures that the enumerate partitions programs is prepared to run. This must be run once per
install of the redist package.

Usage

redist.init.enumpart()

Value

0 on success

References

Benjamin Fifield, Kosuke Imai, Jun Kawahara, and Christopher T Kenny. "The Essential Role of
Empirical Validation in Legislative Redistricting Simulation." Forthcoming, Statistics and Public
Policy.

Examples

Not run:
redist.init.enumpart()

End(Not run)

redist.ipw Inverse probability reweighting for MCMC Redistricting

Description

redist.ipw properly weights and resamples simulated redistricting plans so that the set of sim-
ulated plans resemble a random sample from the underlying distribution. redist.ipw is used to
correct the sample when population parity, geographic compactness, or other constraints are imple-
mented.

Usage

redist.ipw(
plans,
resampleconstraint = c("pop_dev", "edges_removed", "segregation", "status_quo"),
targetbeta,
targetpop = NULL,
temper = 0

)

64 redist.ipw

Arguments

plans An object of class redist_plans from redist_flip().
resampleconstraint

The constraint implemented in the simulations: one of "pop", "compact", "seg-
regation", or "similar".

targetbeta The target value of the constraint.

targetpop The desired level of population parity. targetpop = 0.01 means that the desired
distance from population parity is 1%. The default is NULL.

temper A flag for whether simulated tempering was used to improve the mixing of the
Markov Chain. The default is 1.

Details

This function allows users to resample redistricting plans using inverse probability weighting tech-
niques described in Rubin (1987). This techniques reweights and resamples redistricting plans so
that the resulting sample is representative of a random sample from the uniform distribution.

Value

redist.ipw returns an object of class "redist". The object redist is a list that contains the follow-
ing components (the inclusion of some components is dependent on whether tempering techniques
are used):

plans Matrix of congressional district assignments generated by the algorithm. Each
row corresponds to a geographic unit, and each column corresponds to a simu-
lation.

distance_parity

Vector containing the maximum distance from parity for a particular simulated
redistricting plan.

mhdecisions A vector specifying whether a proposed redistricting plan was accepted (1) or
rejected (0) in a given iteration.

mhprob A vector containing the Metropolis-Hastings acceptance probability for each
iteration of the algorithm.

pparam A vector containing the draw of the p parameter for each simulation, which
dictates the number of swaps attempted.

constraint_pop A vector containing the value of the population constraint for each accepted
redistricting plan.

constraint_compact

A vector containing the value of the compactness constraint for each accepted
redistricting plan.

constraint_segregation

A vector containing the value of the segregation constraint for each accepted
redistricting plan.

constraint_similar

A vector containing the value of the similarity constraint for each accepted re-
districting plan.

redist.ipw 65

constraint_vra A vector containing the value of the vra constraint for each accepted redistricting
plan.

constraint_partisan

A vector containing the value of the partisan constraint for each accepted redis-
tricting plan.

constraint_minority

A vector containing the value of the minority constraint for each accepted redis-
tricting plan.

constraint_hinge

A vector containing the value of the hinge constraint for each accepted redis-
tricting plan.

constraint_qps A vector containing the value of the QPS constraint for each accepted redistrict-
ing plan.

beta_sequence A vector containing the value of beta for each iteration of the algorithm. Re-
turned when tempering is being used.

mhdecisions_beta

A vector specifying whether a proposed beta value was accepted (1) or rejected
(0) in a given iteration of the algorithm. Returned when tempering is being used.

mhprob_beta A vector containing the Metropolis-Hastings acceptance probability for each
iteration of the algorithm. Returned when tempering is being used.

References

Fifield, Benjamin, Michael Higgins, Kosuke Imai and Alexander Tarr. (2016) "A New Automated
Redistricting Simulator Using Markov Chain Monte Carlo." Working Paper. Available at http:
//imai.princeton.edu/research/files/redist.pdf.

Rubin, Donald. (1987) "Comment: A Noniterative Sampling/Importance Resampling Alternative
to the Data Augmentation Algorithm for Creating a Few Imputations when Fractions of Missing
Information are Modest: the SIR Algorithm." Journal of the American Statistical Association.

Examples

data(iowa)
map_ia <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.01)
cons <- redist_constr(map_ia)
cons <- add_constr_pop_dev(cons, strength = 5.4)
alg <- redist_flip(map_ia, nsims = 500, constraints = cons)

alg_ipw <- redist.ipw(plans = alg,
resampleconstraint = "pop_dev",
targetbeta = 1,
targetpop = 0.05)

http://imai.princeton.edu/research/files/redist.pdf
http://imai.princeton.edu/research/files/redist.pdf

66 redist.mcmc.mpi

redist.mcmc.mpi MCMC Redistricting Simulator using MPI

Description

redist.mcmc.mpi is used to simulate Congressional redistricting plans using Markov Chain Monte
Carlo methods.

Usage

redist.mcmc.mpi(
adj,
total_pop,
nsims,
ndists = NA,
init_plan = NULL,
loopscompleted = 0,
nloop = 1,
nthin = 1,
eprob = 0.05,
lambda = 0,
pop_tol = NA,
group_pop = NA,
areasvec = NA,
counties = NA,
borderlength_mat = NA,
ssdmat = NA,
compactness_metric = "fryer-holden",
rngseed = NA,
constraint = NA,
constraintweights = NA,
betaseq = "powerlaw",
betaseqlength = 10,
adjswaps = TRUE,
freq = 100,
savename = NA,
maxiterrsg = 5000,
verbose = FALSE,
cities = NULL

)

Arguments

adj An adjacency matrix, list, or object of class "SpatialPolygonsDataFrame."

total_pop A vector containing the populations of each geographic unit.

nsims The number of simulations run before a save point.

redist.mcmc.mpi 67

ndists The number of congressional districts. The default is NULL.

init_plan A vector containing the congressional district labels of each geographic unit.
The default is NULL. If not provided, random and contiguous congressional dis-
trict assignments will be generated using redist.rsg.

loopscompleted Number of save points reached by the algorithm. The default is 0.

nloop The total number of save points for the algorithm. The default is 1. Note that
the total number of simulations run will be nsims * nloop.

nthin The amount by which to thin the Markov Chain. The default is 1.

eprob The probability of keeping an edge connected. The default is 0.05.

lambda The parameter determining the number of swaps to attempt each iteration of the
algorithm. The number of swaps each iteration is equal to Pois(lambda) + 1.
The default is 0.

pop_tol The strength of the hard population constraint. pop_tol = 0.05 means that any
proposed swap that brings a district more than 5\ rejected. The default is NULL.

group_pop A vector of populations for some sub-group of interest. The default is NULL.

areasvec A vector of precinct areas for discrete Polsby-Popper. The default is NULL.

counties A vector of county membership assignments. The default is NULL.
borderlength_mat

A matrix of border length distances, where the first two columns are the indices
of precincts sharing a border and the third column is its distance. Default is
NULL.

ssdmat A matrix of squared distances between geographic units. The default is NULL.
compactness_metric

The compactness metric to use when constraining on compactness. Default is
fryer-holden, the other implemented option is polsby-popper.

rngseed Allows the user to set the seed for the simulations. Default is NULL.

constraint Which constraint to apply. Accepts any combination of compact, vra, population,
similarity, or none (no constraint applied). The default is NULL.

constraintweights

The weights to apply to each constraint. Should be a vector the same length as
constraint. Default is NULL.

betaseq Sequence of beta values for tempering. The default is powerlaw (see Fifield et.
al (2015) for details).

betaseqlength Length of beta sequence desired for tempering. The default is 10.

adjswaps Flag to restrict swaps of beta so that only values adjacent to current constraint
are proposed. The default is TRUE.

freq Frequency of between-chain swaps. Default to once every 100 iterations

savename Filename to save simulations. Default is NULL.

maxiterrsg Maximum number of iterations for random seed-and-grow algorithm to generate
starting values. Default is 5000.

verbose Whether to print initialization statement. Default is TRUE.

cities integer vector of cities for QPS constraint.

68 redist.mcmc.mpi

Details

This function allows users to simulate redistricting plans using Markov Chain Monte Carlo meth-
ods. Several constraints corresponding to substantive requirements in the redistricting process are
implemented, including population parity and geographic compactness. In addition, the function
includes multiple-swap and parallel tempering functionality in MPI to improve the mixing of the
Markov Chain.

Value

redist.mcmc.mpi returns an object of class "redist". The object redist is a list that contains
the following components (the inclusion of some components is dependent on whether tempering
techniques are used):

partitions Matrix of congressional district assignments generated by the algorithm. Each
row corresponds to a geographic unit, and each column corresponds to a simu-
lation.

distance_parity

Vector containing the maximum distance from parity for a particular simulated
redistricting plan.

mhdecisions A vector specifying whether a proposed redistricting plan was accepted (1) or
rejected (0) in a given iteration.

mhprob A vector containing the Metropolis-Hastings acceptance probability for each
iteration of the algorithm.

pparam A vector containing the draw of the p parameter for each simulation, which
dictates the number of swaps attempted.

constraint_pop A vector containing the value of the population constraint for each accepted
redistricting plan.

constraint_compact

A vector containing the value of the compactness constraint for each accepted
redistricting plan.

constraint_vra A vector containing the value of the vra constraint for each accepted redistricting
plan.

constraint_similar

A vector containing the value of the similarity constraint for each accepted re-
districting plan.

beta_sequence A vector containing the value of beta for each iteration of the algorithm. Re-
turned when tempering is being used.

mhdecisions_beta

A vector specifying whether a proposed beta value was accepted (1) or rejected
(0) in a given iteration of the algorithm. Returned when tempering is being used.

mhprob_beta A vector containing the Metropolis-Hastings acceptance probability for each
iteration of the algorithm. Returned when tempering is being used.

References

Fifield, Benjamin, Michael Higgins, Kosuke Imai and Alexander Tarr. (2016) "A New Automated
Redistricting Simulator Using Markov Chain Monte Carlo." Working Paper. Available at http:
//imai.princeton.edu/research/files/redist.pdf.

http://imai.princeton.edu/research/files/redist.pdf
http://imai.princeton.edu/research/files/redist.pdf

redist.multisplits 69

Examples

Not run:
Cannot run on machines without Rmpi
data(fl25)
data(fl25_enum)
data(fl25_adj)

Code to run the simulations in Figure 4 in Fifield, Higgins, Imai and
Tarr (2015)

Get an initial partition
init_plan <- fl25_enum$plans[, 5118]

Run the algorithm
redist.mcmc.mpi(adj = fl25_adj, total_pop = fl25$pop,

init_plan = init_plan, nsims = 10000, savename = "test")

End(Not run)

redist.multisplits Counts the Number of Counties Split Between 3 or More Districts

Description

Counts the total number of counties that are split across more than 2 districts.

Usage

redist.multisplits(plans, counties)

Arguments

plans A numeric vector (if only one map) or matrix with one row for each precinct
and one column for each map. Required.

counties A vector of county names or county ids.

Value

integer matrix where each district is a

Examples

data(iowa)
ia <- redist_map(iowa, existing_plan = cd_2010, total_pop = pop, pop_tol = 0.01)
plans <- redist_smc(ia, 50, silent = TRUE)
#old redist.multisplits(plans, ia$region)
splits_multi(plans, ia, region)

70 redist.plot.adj

redist.parity Calculates Maximum Deviation from Population Parity

Description

Computes the deviation from population parity from a plan. Higher values indicate that (at least) a
single district in the map deviates from population parity. See Details.

Usage

redist.parity(plans, total_pop)

plan_parity(map, .data = pl(), ...)

Arguments

plans A matrix with one row for each precinct and one column for each map. Re-
quired.

total_pop A numeric vector with the population for every precinct.

map a redist_map object

.data a redist_plans object

... passed on to redist.parity

Details

With a map with pop representing the populations of each district, the deviation from population
parity is given as max(abs(pop - parity) / parity) where parity = sum(pop)/length(pop) is
the population size for the average district. Therefore, the metric can be thought of as the maximum
percent deviation from equal population. For example, a value of 0.03 in this metric indicates that
all districts are within 3 percent of population parity.

Value

numeric vector with the population parity for each column

redist.plot.adj Creates a Graph Overlay

Description

Creates a Graph Overlay

redist.plot.contr_pfdr 71

Usage

redist.plot.adj(
shp,
adj = NULL,
plan = NULL,
centroids = TRUE,
drop = FALSE,
plot_shp = TRUE,
zoom_to = NULL,
title = ""

)

Arguments

shp A SpatialPolygonsDataFrame or sf object. Required.

adj A zero-indexed adjacency list. Created with redist.adjacency if not supplied.
Default is NULL.

plan A numeric vector with one entry for each precinct in shp. Used to remove edges
that cross boundaries. Default is NULL. Optional.

centroids A logical indicating if centroids should be plotted. Default is TRUE.

drop A logical indicating if edges that cross districts should be dropped. Default is
FALSE.

plot_shp A logical indicating if the shp should be plotted under the graph. Default is
TRUE.

zoom_to <data-masking> An indexing vector of units to zoom the map to.

title A string title of plot. Defaults to empty string. Optional.

Value

ggplot map

Examples

data(iowa)
redist.plot.adj(shp = iowa, plan = iowa$cd_2010)

redist.plot.contr_pfdr

Plot a Projective Contrast with positive False Discovery Rate (pFDR)
Control

Description

Plot a projective contrast on a map with areas selected by the pFDR control procedure hatched.

72 redist.plot.cores

Usage

redist.plot.contr_pfdr(
map,
contr,
level = 0.05,
density = 0.2,
spacing = 0.015

)

Arguments

map A redist_map object

contr The output of proj_contr() with pfdr=TRUE: A vector containing the contrast
and an attribute "q" containing the q-values.

level The positive false discovery rate level to control.

density The density of the hatching (roughly what portion is shaded).

spacing The spacing of the hatches.

Value

A ggplot.

Examples

example code
set.seed(1812)
data(iowa)
map <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.01)
plans <- redist_smc(map, 50, silent = TRUE)
plans$dem <- group_frac(map, dem_08, tot_08, plans)

pc = proj_contr(plans, dem, pfdr=TRUE)
redist.plot.contr_pfdr(map, pc, level=0.4) # high `level` just to demonstrate

redist.plot.cores Plot Cores

Description

Plot Cores

Usage

redist.plot.cores(shp, plan = NULL, core = NULL, lwd = 2)

redist.plot.distr_qtys 73

Arguments

shp A SpatialPolygonsDataFrame or sf object. Required.

plan A numeric vector with one entry for each precinct in shp. Used to color the
districts. Required.

core Required. integer vector produced by redist.identify.cores().

lwd Line width. Defaults to 2.

Value

ggplot

redist.plot.distr_qtys

Plot quantities by district

Description

Plots a boxplot of a quantity of interest across districts, with districts optionally sorted by this
quantity. Adds reference points for each reference plan, if applicable.

Usage

redist.plot.distr_qtys(
plans,
qty,
sort = "asc",
geom = "jitter",
color_thresh = NULL,
size = 0.1,
ref_geom,
ref_label,
...

)

Arguments

plans the redist_plans object.

qty <data-masking> the quantity of interest.

sort set to "asc" to sort districts in ascending order of qty (the default), "desc" for
descending order, or FALSE or "none" for no sorting.

geom the ggplot2 geom to use in plotting the simulated districts: either "jitter" or
"boxplot". Can also take in a function, so long as the function accepts

color_thresh if a number, the threshold to use in coloring the points. Plans with quantities
of interest above the threshold will be colored differently than plans below the
threshold.

74 redist.plot.distr_qtys

size The dot size for geom="jitter".

ref_geom The reference plan geometry type. "line" or "point" can be passed for rea-
sonable defaults. Can also take in a function, so long as the function accepts
....

ref_label A human-readable name for the reference plan. By default the name in the
plan column is used. This can also take in a function which returns a call to
ggplot2::labs().

... passed on to geom_boxplot

Value

A ggplot

Using ggdist

For custom functions in geom, we can also create more complicated things like rainclouds using the
ggdist package. For example:

raincloud <- function(...) {
list(

ggdist::stat_slab(aes(thickness = ggplot2::after_stat(pdf*n)), scale = 0.7),
ggdist::stat_dotsinterval(side = "bottom", scale = 0.7,

slab_size = NA, quantiles = 200)
)
}

These functions can be then passed to geom.

Examples

library(dplyr)
data(iowa)

iowa <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.05, total_pop = pop)
plans <- redist_smc(iowa, nsims = 100, silent = TRUE)
plans <- plans %>% mutate(pct_dem = group_frac(iowa, dem_08, tot_08))
redist.plot.distr_qtys(plans, pct_dem)

It also takes custom functions:
redist.plot.distr_qtys(plans, pct_dem, geom = ggplot2::geom_violin)

With the raincloud example, if you have `ggdist`, you can run:
redist.plot.distr_qtys(plans, pct_dem, geom = raincloud)

The reference geom can also be changed via `reg_geom`
r_geom <- function(...) ggplot2::geom_segment(ggplot2::aes(as.integer(.data$.distr_no) - 0.5,

xend = as.integer(.data$.distr_no) + 0.5,
yend = pct_dem,
color = .data$draw),

linewidth = 1.2, ...)

redist.plot.hist 75

Finally, the `ref_label` argument can also be swapped for a function, like so:
redist.plot.distr_qtys(plans, pct_dem, geom = ggplot2::geom_violin, ref_geom = r_geom,

ref_label = function() ggplot2::labs(color = 'Ref.'))

redist.plot.hist Plot a histogram of a summary statistic

Description

Plots a histogram of a statistic of a redist_plans object, with a reference line for each reference
plan, if applicable.

Usage

redist.plot.hist(plans, qty, bins = NULL, ...)

S3 method for class 'redist_plans'
hist(x, qty, ...)

Arguments

plans the redist_plans object.

qty <data-masking> the statistic.

bins the number of bins to use in the histogram. Defaults to Freedman-Diaconis rule.

... passed on to geom_histogram

x <data-masking> the statistic.

Value

A ggplot

Examples

library(dplyr)
data(iowa)

iowa <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.05)
plans <- redist_smc(iowa, nsims = 100, silent = TRUE)
group_by(plans, draw) %>%

summarize(pop_dev = max(abs(total_pop/mean(total_pop) - 1))) %>%
redist.plot.hist(pop_dev)

76 redist.plot.map

redist.plot.majmin Majority Minority Plots

Description

Majority Minority Plots

Usage

redist.plot.majmin(grouppercent, type = "hist", title = "")

Arguments

grouppercent output from redist.group.percent

type string in ’hist’, ’toptwo’, or ’box’

title ggplot title

Value

ggplot

redist.plot.map Plot a Map

Description

Create a ggplot map. It fills by plan or argument fill. If both are supplied, plan is used as the color
and fill as the alpha parameter.

Usage

redist.plot.map(
shp,
adj,
plan = NULL,
fill = NULL,
fill_label = "",
zoom_to = NULL,
boundaries = is.null(fill),
title = ""

)

redist.plot.penalty 77

Arguments

shp A SpatialPolygonsDataFrame, sf object, or redist_map. Required.

adj A zero-indexed adjacency list. Created with redist.adjacency if not supplied and
needed for coloring. Default is NULL.

plan <data-masking> A numeric vector with one entry for each precinct in shp.
Used to color the districts. Default is NULL. Optional.

fill <data-masking> A numeric/integer vector with values to color the plot with.
Optional.

fill_label A string title of plot. Defaults to the empty string

zoom_to <data-masking> An indexing vector of units to zoom the map to.

boundaries A logical indicating if precinct boundaries should be plotted.

title A string title of plot. Defaults to empty string. Optional.

Value

ggplot map

Examples

data(iowa)
redist.plot.map(shp = iowa, plan = iowa$cd_2010)

iowa_map <- redist_map(iowa, existing_plan = cd_2010)
redist.plot.map(iowa_map, fill = dem_08/tot_08, zoom_to = (cd_2010 == 1))

redist.plot.penalty (Deprecated) Visualize Group Power Penalty

Description

Plots the shape of the add_constr_grp_pow() penalty.

Usage

redist.plot.penalty(
tgt_min = 0.55,
tgt_other = 0.25,
strength_vra = 2500,
pow_vra = 1.5,
limits = TRUE

)

78 redist.plot.plans

Arguments

tgt_min double, defaults to 0.55. The minority target percent.
tgt_other double, defaults to 0.25. The other group target percent.
strength_vra double, strength of the VRA constraint.
pow_vra double, exponent of the VRA constraint.
limits Whether to limit y axis to 0,500. Default is TRUE for comparability across

values.

Details

This function allows you to plot the un-exponentiated penalty implemented as add_constr_grp_pow().
The function takes two key inputs, tgt_min and tgt_other which center the minimum penalty
spots. A higher y-value indicates a higher penalty and incentivizes moving towards a spot with a
lower y-value. The x-axis indicates the group population proportion in a given district.

Value

ggplot

redist.plot.plans Plot a district assignment

Description

Plot a district assignment

Usage

redist.plot.plans(
plans,
draws,
shp,
qty = NULL,
interactive = FALSE,
...,
geom = NULL

)

Arguments

plans a redist_plans object.
draws the plan(s) to plot. Will match the draw column of x.
qty the quantity to plot. Defaults to the district assignment.
interactive if TRUE, show an interactive map in the viewer rather than a static map. Only

uses the first element of draws
... additional arguments passed to the plotting functions.
geom, shp the redist_map geometry to use (geom is deprecated).

redist.plot.scatter 79

Value

A ggplot

Examples

library(dplyr)
data(iowa)

iowa <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.05, total_pop = pop)
plans <- redist_smc(iowa, nsims = 100, silent = TRUE)
redist.plot.plans(plans, c(1, 2, 3, 4), iowa)

redist.plot.scatter Scatter plot of plan summary statistics

Description

Makes a scatterplot of two quantities of interest across districts or plans.

Usage

redist.plot.scatter(plans, x, y, ..., bigger = TRUE)

Arguments

plans the redist_plans object.

x <data-masking> the quantity to plot on the horizontal axis.

y <data-masking> the quantity to plot on the vertical axis.

... passed on to geom_point.

bigger if TRUE, make the point corresponding to the reference plan larger.

Value

A ggplot

Examples

library(dplyr)
data(iowa)

iowa <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.05, total_pop = pop)
plans <- redist_smc(iowa, nsims = 100, silent = TRUE)
plans %>%

mutate(comp = distr_compactness(iowa)) %>%
group_by(draw) %>%
summarize(pop_dev = max(abs(total_pop/mean(total_pop) - 1)),

80 redist.plot.trace

comp = comp[1]) %>%
redist.plot.scatter(pop_dev, comp)

redist.plot.trace Make a traceplot for a summary statistic

Description

For a statistic in a redist_plans object, make a traceplot showing the evolution of the statistic over
MCMC iterations.

Usage

redist.plot.trace(plans, qty, district = 1L, ...)

Arguments

plans the redist_plans object.

qty <data-masking> the statistic.

district for redist_plans objects with multiple districts, which district to subset to
for plotting. Set to NULL to perform no subsetting.

... passed on to geom_line

Value

A ggplot

Examples

library(dplyr)
data(iowa)

iowa_map <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.05)
plans <- redist_mergesplit_parallel(iowa_map, nsims = 200, chains = 2, silent = TRUE) %>%

mutate(dem = group_frac(iowa_map, dem_08, dem_08 + rep_08)) %>%
number_by(dem)

redist.plot.trace(plans, dem, district = 1)

redist.plot.varinfo 81

redist.plot.varinfo Static Variation of Information Plot

Description

Static Variation of Information Plot

Usage

redist.plot.varinfo(plans, group_pop, total_pop, shp)

Arguments

plans matrix of district assignments

group_pop Required Population of subgroup being studied in each precinct.

total_pop Required. Population of each precinct.

shp sf dataframe

Value

patchworked ggplot

redist.plot.wted.adj Plot Weighted Border Adjacency

Description

Plots the weighted adjacency graph by how often precincts coocur. If an argument to counties is
provided, it subsets the edges to plot to those that cross over the county boundary.

Usage

redist.plot.wted.adj(
shp,
plans,
counties = NULL,
ref = TRUE,
adj = NULL,
plot_shp = TRUE

)

82 redist.prec.pop.overlap

Arguments

shp A SpatialPolygonsDataFrame, sf object, or redist_map. Required.

plans A redist_plans object or matrix of redistricting plans, where each column
indicates a plan and each

counties unquoted name of a column in shp or a vector of county assignments. Subsets
to edges which cross this boundary if supplied.

ref Plot reference map? Defaults to TRUE which gets the existing plan from

adj A zero-indexed adjacency list. Extracted from shp if shp is a redist_map.
Otherwise created with redist.adjacency if not supplied. Default is NULL.

plot_shp Should the shapes be plotted? Default is TRUE.

Value

ggplot

Examples

data(iowa)
shp <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.01)
plans <- redist_smc(shp, 100)
redist.plot.wted.adj(shp, plans = plans, counties = region)

redist.prec.pop.overlap

Compare the Population Overlap Across Plans at the Precinct Level

Description

Compare the Population Overlap Across Plans at the Precinct Level

Usage

redist.prec.pop.overlap(
plan_old,
plan_new,
total_pop,
weighting = "s",
normalize = TRUE,
index_only = FALSE,
return_mat = FALSE

)

redist.prep.enumpart 83

Arguments

plan_old The reference plan to compare against

plan_new The new plan to compare to the reference plan

total_pop The total population by precinct This can also take a redist_map object and will
use the population in that object. If nothing is provided, it weights all entries in
plan equally.

weighting Should weighting be done by sum of populations 's', mean of populations 'm',
geometric mean of populations 'g', or none 'n'

normalize Should entries be normalized by the total population

index_only Default is FALSE. TRUE returns only one numeric index, the mean of the upper
triangle of the matrix, under the weighting and normalization chosen.

return_mat Defaults to FALSE, where it returns the summary by row. If TRUE returns
matrix with length(plan_old) rows and columns. Ignored if index_only = TRUE.

Value

numeric vector with length(plan_old) entries

Examples

set.seed(5)
data(iowa)
iowa_map <- redist_map(iowa, total_pop = pop, pop_tol = 0.01, ndists = 4)
plans <- redist_smc(iowa_map, 2, silent = TRUE)
plans_mat <- get_plans_matrix(plans)
ov_vec <- redist.prec.pop.overlap(plans_mat[, 1], plans_mat[, 2], iowa_map)
redist.prec.pop.overlap(plans_mat[, 1], plans_mat[, 2], iowa_map, weighting = "s",

normalize = FALSE, index_only = TRUE)

redist.prep.enumpart Prepares a run of the enumpart algorithm by ordering edges

Description

Prepares a run of the enumpart algorithm by ordering edges

Usage

redist.prep.enumpart(
adj,
unordered_path,
ordered_path,
weight_path = NULL,
total_pop = NULL

)

84 redist.random.subgraph

Arguments

adj zero indexed adjacency list

unordered_path valid path to output the unordered adjacency map to

ordered_path valid path to output the ordered adjacency map to

weight_path A path (not including ".dat") to store a space-delimited file containing a vector
of vertex weights. Only supply with total_pop.

total_pop the vector of precinct populations. Only supply with weight_path

Value

0 on success

References

Benjamin Fifield, Kosuke Imai, Jun Kawahara, and Christopher T Kenny. "The Essential Role of
Empirical Validation in Legislative Redistricting Simulation." Forthcoming, Statistics and Public
Policy.

Examples

Not run:
temp <- tempdir()
data(fl25)
adj <- redist.adjacency(fl25)
redist.prep.enumpart(adj = adj, unordered_path = paste0(temp, "/unordered"),

ordered_path = paste0(temp, "/ordered"))

End(Not run)

redist.random.subgraph

Return a random subgraph of a shape

Description

random.subgraph returns a random subset of the shp provided

Usage

redist.random.subgraph(shp, n, adj = NULL)

Arguments

shp sf object or SpatialPolygonsDataFrame

n number of edges to sample. n must be a positive integer.

adj Optional. zero indexed adjacency list.

redist.read.enumpart 85

Details

Snowball sampling with backtracking

Value

sf dataframe with n rows

redist.read.enumpart Read Results from enumpart

Description

Read Results from enumpart

Usage

redist.read.enumpart(out_path, skip = 0, n_max = -1L)

Arguments

out_path out_path specified in redist.run.enumpart

skip number of lines to skip

n_max max number of lines to read

Value

district_membership matrix

References

Benjamin Fifield, Kosuke Imai, Jun Kawahara, and Christopher T Kenny. "The Essential Role of
Empirical Validation in Legislative Redistricting Simulation." Forthcoming, Statistics and Public
Policy.

Examples

Not run:
temp <- tempdir()
cds <- redist.read.enumpart(out_path = paste0(temp, "/enumerated"))

End(Not run)

86 redist.reorder

redist.reduce.adjacency

Reduce Adjacency List

Description

Tool to help reduce adjacency lists for analyzing subsets of maps.

Usage

redist.reduce.adjacency(adj, keep_rows)

Arguments

adj A zero-indexed adjacency list. Required.

keep_rows row numbers of precincts to keep

Value

zero indexed adjacency list with max value length(keep_rows) - 1

Examples

data(fl25_adj)
redist.reduce.adjacency(fl25_adj, c(2, 3, 4, 6, 21))

redist.reorder Reorders district numbers

Description

Ensures that for each column in the plans object, the first district listed is 1, the second is 2, up to n
districts. Assumes that all columns have the same number of districts as the first.

Usage

redist.reorder(plans)

Arguments

plans A numeric vector (if only one map) or matrix with one row for each precinct
and one column for each map.

Value

integer matrix

redist.rsg 87

Examples

cds <- matrix(c(rep(c(4L, 5L, 2L, 1L, 3L), 5),
rep(c(5L, 4L, 3L, 2L, 1L), 2), rep(c(4L, 5L, 2L, 1L, 3L), 3)), nrow = 25)

redist.reorder(cds)

redist.rsg Redistricting via Random Seed and Grow Algorithm

Description

redist.rsg generates redistricting plans using a random seed a grow algorithm. This is the non-
compact districting algorithm described in Chen and Rodden (2013). The algorithm can provide
start values for the other redistricting routines in this package.

Usage

redist.rsg(adj, total_pop, ndists, pop_tol, verbose = TRUE, maxiter = 5000)

Arguments

adj List of length N, where N is the number of precincts. Each list element is an in-
teger vector indicating which precincts that precinct is adjacent to. It is assumed
that precinct numbers start at 0.

total_pop numeric vector of length N, where N is the number of precincts. Each element
lists the population total of the corresponding precinct, and is used to enforce
population constraints.

ndists integer, the number of districts we want to partition the precincts into.
pop_tol numeric, indicating how close district population targets have to be to the target

population before algorithm converges. thresh=0.05 for example means that all
districts must be between 0.95 and 1.05 times the size of target.pop in population
size.

verbose boolean, indicating whether the time to run the algorithm is printed.
maxiter integer, indicating maximum number of iterations to attempt before convergence

to population constraint fails. If it fails once, it will use a different set of start
values and try again. If it fails again, redist.rsg() returns an object of all NAs,
indicating that use of more iterations may be advised.

Value

list, containing three objects containing the completed redistricting plan.

• plan: A vector of length N, indicating the district membership of each precinct.
• district_list A list of length Ndistrict. Each list contains a vector of the precincts in the

respective district.
• district_pop A vector of length Ndistrict, containing the population totals of the respective

districts.

88 redist.run.enumpart

Author(s)

Benjamin Fifield, Department of Politics, Princeton University <benfifield@gmail.com>, https:
//www.benfifield.com/

Michael Higgins, Department of Statistics, Kansas State University <mikehiggins@k-state.edu>,
https://www.k-state.edu/stats/about/people/HigginsMichael.html

Kosuke Imai, Department of Politics, Princeton University <imai@harvard.edu>, https://imai.
fas.harvard.edu

James Lo, <jameslo@princeton.edu>

Alexander Tarr, Department of Electrical Engineering, Princeton University <atarr@princeton.edu>

References

Jowei Chen and Jonathan Rodden (2013) “Unintentional Gerrymandering: Political Geography and
Electoral Bias in Legislatures.” Quarterly Journal of Political Science. 8(3): 239-269.

Examples

Real data example from test set
data(fl25)
data(fl25_adj)

res <- redist.rsg(adj = fl25_adj, total_pop = fl25$pop,
ndists = 3, pop_tol = 0.05)

redist.run.enumpart Runs the enumpart algorithm

Description

Runs the enumpart algorithm

Usage

redist.run.enumpart(
ordered_path,
out_path,
ndists = 2,
all = TRUE,
n = NULL,
weight_path = NULL,
lower = NULL,
upper = NULL,
options = NULL

)

https://www.benfifield.com/
https://www.benfifield.com/
https://www.k-state.edu/stats/about/people/HigginsMichael.html
https://imai.fas.harvard.edu
https://imai.fas.harvard.edu

redist.sink.plan 89

Arguments

ordered_path Path used in redist.prep.enumpart (not including ".dat")

out_path Valid path to output the enumerated districts

ndists number of districts to enumerate

all boolean. TRUE outputs all districts. FALSE samples n districts.

n integer. Number of districts to output if all is FALSE. Returns districts selected
from uniform random distribution.

weight_path A path (not including ".dat") to a space-delimited file containing a vector of
vertex weights, to be used along with lower and upper.

lower A lower bound on each partition’s total weight, implemented by rejection sam-
pling.

upper An upper bound on each partition’s total weight.

options Additional enumpart arguments. Not recommended for use.

Value

0 on success

References

Benjamin Fifield, Kosuke Imai, Jun Kawahara, and Christopher T Kenny. "The Essential Role of
Empirical Validation in Legislative Redistricting Simulation." Forthcoming, Statistics and Public
Policy.

Examples

Not run:
temp <- tempdir()
redist.run.enumpart(ordered_path = paste0(temp, "/ordered"),

out_path = paste0(temp, "/enumerated"))

End(Not run)

redist.sink.plan Sink Plans to 1:ndists

Description

Takes a plan and renumbers it to be from 1:ndists

Usage

redist.sink.plan(plan)

90 redist.smc_is_ci

Arguments

plan vector of assignments, required.

Value

A vector with an ID that corresponds from 1:ndists, and attribute n indicating the number of districts.

Examples

data(fl25_enum)
plan <- fl25_enum$plans[, 5118]
Subset based on something:
plan <- plan[plan != 2]
plan <- vctrs::vec_group_id(plan)
Now plan can be used with redist_flip()
plan

redist.smc_is_ci (Deprecated) Confidence Intervals for Importance Sampling Esti-
mates

Description

Builds a confidence interval for a quantity of interest, given importance sampling weights.

Usage

redist.smc_is_ci(x, wgt, conf = 0.99)

Arguments

x A numeric vector containing the quantity of interest

wgt A numeric vector containing the nonnegative importance weights. Will be nor-
malized automatically.

conf The confidence level for the interval.

Value

A two-element vector of the form [lower, upper] containing the importance sampling confidence
interval.

redist.subset 91

redist.subset Subset a shp

Description

Subsets a shp object along with its adjacency. Useful for running smaller analyses on pairs of dis-
tricts. Provide population, ndists, pop_tol, and sub_ndists to get proper population parity constraints
on subsets.

Usage

redist.subset(shp, adj, keep_rows, total_pop, ndists, pop_tol, sub_ndists)

Arguments

shp An sf object

adj A zero-indexed adjacency list. Created with redist.adjacency if not supplied.

keep_rows row numbers of precincts to keep. Random submap selected if not supplied.

total_pop numeric vector with one entry for the population of each precinct.

ndists integer, number of districts in whole map

pop_tol The strength of the hard population constraint.

sub_ndists integer, number of districts in subset map

Value

a list containing the following components:

shp The subsetted shp object

adj The subsetted adjacency list for shp

keep_rows The indices of the rows kept.

sub_ndists The number of districts in the subset.

sub_pop_tol The new parity constraint for a subset.

92 redist.wted.adj

redist.uncoarsen Uncoarsen a District Matrix

Description

After a cores analysis or other form of coarsening, sometimes you need to be at the original geog-
raphy level to be comparable. This takes in a coarsened matrix and uncoarsens it to the original
level

Usage

redist.uncoarsen(plans, group_index)

Arguments

plans A coarsened matrix of plans.
group_index The index used to coarsen the shape.

Value

matrix

redist.wted.adj Create Weighted Adjacency Data

Description

Create Weighted Adjacency Data

Usage

redist.wted.adj(map = NULL, plans = NULL)

Arguments

map redist_map
plans redist_plans

Value

tibble

Examples

data(iowa)
shp <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.01)
plans <- redist_smc(shp, 100)
redist.wted.adj(shp, plans = plans)

redist_ci 93

redist_ci Confidence Intervals for SMC and MCMC Estimates

Description

Builds a confidence interval for a quantity of interest. If multiple runs are available, uses the
between-run variation to estimate the standard error. If only one run is available, uses information
on the SMC particle/plan genealogy to estimate the standard error, using a variant of the method of
Olson & Douc (2019). The multiple-run estimator is more reliable, especially for situations with
many districts, and should be used when parallelism is available. All reference plans are ignored.

Usage

redist_ci(plans, x, district = 1L, conf = 0.9, by_chain = FALSE)

redist_smc_ci(plans, x, district = 1L, conf = 0.9, by_chain = FALSE)

redist_mcmc_ci(plans, x, district = 1L, conf = 0.9, by_chain = FALSE)

Arguments

plans a redist_plans object.

x the quantity to build an interval for. Tidy-evaluated within plans.

district for redist_plans objects with multiple districts, which district to subset to. Set
to NULL to perform no subsetting.

conf the desired confidence level.

by_chain Whether the confidence interval should indicate overall sampling uncertainty
(FALSE) or per-chain sampling uncertainty (TRUE). In the latter case the intervals
will be wider by a factor of sqrt(runs).

Value

A tibble with three columns: X, X_lower, and X_upper, where X is the name of the vector of interest,
containing the mean and confidence interval. When used inside summarize() this will create three
columns in the output data.

Functions

• redist_smc_ci(): Compute confidence intervals for SMC output.

• redist_mcmc_ci(): Compute confidence intervals for MCMC output.

94 redist_constr

References

Lee, A., & Whiteley, N. (2018). Variance estimation in the particle filter. Biometrika, 105(3),
609-625.

Olsson, J., & Douc, R. (2019). Numerically stable online estimation of variance in particle filters.
Bernoulli, 25(2), 1504-1535.

H. P. Chan and T. L. Lai. A general theory of particle filters in hidden Markov models and some
applications. Ann. Statist., 41(6):2877–2904, 2013.

Examples

library(dplyr)
data(iowa)

iowa_map <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.05)
plans <- redist_mergesplit_parallel(iowa_map, nsims = 200, chains = 2, silent = TRUE) %>%

mutate(dem = group_frac(iowa_map, dem_08, dem_08 + rep_08)) %>%
number_by(dem)

redist_smc_ci(plans, dem)

redist_constr Set up constraints for sampling

Description

redist_constr objects are used to specify constraints when sampling redistricting plans with
redist_smc() and redist_mergesplit(). Each constraint is specified as a function which scores
a given plan. Higher scores are penalized and sampled less frequently.

Usage

redist_constr(map = tibble())

Arguments

map a redist_map() object; the map that will be used in sampling

Details

The redist_constr object keeps track of sampling constraints in a nested list. You can view the
exact structure of this list by calling str(). Constraints may be added by using one of the following
functions:

• add_constr_compet()

• add_constr_custom()

• add_constr_edges_rem()

• add_constr_fry_hold()

redist_flip 95

• add_constr_grp_hinge()

• add_constr_grp_inv_hinge()

• add_constr_grp_pow()

• add_constr_incumbency()

• add_constr_log_st()

• add_constr_multisplits()

• add_constr_polsby()

• add_constr_pop_dev()

• add_constr_segregation()

• add_constr_splits()

• add_constr_status_quo()

• add_constr_total_splits()

More information about each constraint can be found on the relevant constraint page.

Value

a redist_constr object, which is just a list with a certain nested structure.

Examples

data(iowa)
map_ia <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.01)
constr <- redist_constr(map_ia)
constr <- add_constr_splits(constr, strength = 1.5, admin = region)
print(constr)

redist_flip ’Flip’ Markov Chain Monte Carlo Redistricting Simulation (Fifield et
al. 2020)

Description

This function allows users to simulate redistricting plans using a Markov Chain Monte Carlo al-
gorithm (Fifield, Higgins, Imai, and Tarr 2020). Several constraints corresponding to substantive
requirements in the redistricting process are implemented, including population parity and geo-
graphic compactness. In addition, the function includes multiple-swap and simulated tempering
functionality to improve the mixing of the Markov Chain.

96 redist_flip

Usage

redist_flip(
map,
nsims,
warmup = 0,
init_plan,
constraints = add_constr_edges_rem(redist_constr(map), 0.4),
thin = 1,
eprob = 0.05,
lambda = 0,
temper = FALSE,
betaseq = "powerlaw",
betaseqlength = 10,
betaweights = NULL,
adapt_lambda = FALSE,
adapt_eprob = FALSE,
exact_mh = FALSE,
adjswaps = TRUE,
init_name = NULL,
verbose = TRUE,
nthin

)

Arguments

map A redist_map object.

nsims The number of samples to draw, not including warmup.

warmup The number of warmup samples to discard.

init_plan A vector containing the congressional district labels of each geographic unit.
The default is NULL. If not provided, a random initial plan will be generated using
redist_smc. You can also request to initialize using redist.rsg by supplying
’rsg’, though this is not recommended behavior.

constraints A redist_constr object.

thin The amount by which to thin the Markov Chain. The default is 1.

eprob The probability of keeping an edge connected. The default is 0.05.

lambda lambda The parameter determining the number of swaps to attempt each itera-
tion of the algorithm. The number of swaps each iteration is equal to Pois(lambda)
+ 1. The default is 0.

temper Whether to use simulated tempering algorithm. Default is FALSE.

betaseq Sequence of beta values for tempering. The default is powerlaw (see Fifield et.
al (2020) for details).

betaseqlength Length of beta sequence desired for tempering. The default is 10.

betaweights betaweights Sequence of weights for different values of beta. Allows the user to
upweight certain values of beta over others. The default is NULL (equal weight-
ing).

redist_flip 97

adapt_lambda adapt_lambda Whether to adaptively tune the lambda parameter so that the
Metropolis-Hastings acceptance probability falls between 20% and 40%. De-
fault is FALSE.

adapt_eprob eprob Whether to adaptively tune the edgecut probability parameter so that the
Metropolis-Hastings acceptance probability falls between 20% and 40%. De-
fault is FALSE.

exact_mh Whether to use the approximate (FALSE) or exact (TRUE) Metropolis-Hastings
ratio calculation for accept-reject rule. Default is FALSE.

adjswaps Flag to restrict swaps of beta so that only values adjacent to current constraint
are proposed. The default is TRUE.

init_name a name for the initial plan, or FALSE to not include the initial plan in the output.
Defaults to the column name of the existing plan, or "<init>" if the initial plan
is sampled.

verbose Whether to print initialization statement. Default is TRUE.

nthin Deprecated. Use thin.

Details

redist_flip allows for Gibbs constraints to be supplied via a list object passed to constraints.
redist_flip uses a small compactness constraint by default, as this improves the realism of the
maps greatly and also leads to large speed improvements. (One of the most time consuming aspects
of the flip MCMC backend is checking for district shattering, which is slowed down even further by
non-compact districts. As such, it is recommended that all flip simulations use at least a minimal
compactness constraint, even if you weaken it from the default settings.) The default is a compact
constraint using the edges-removed metric with a weight of 0.6. For very small maps (< 100
precincts), you will likely want to weaken (lower) this constraint, while for very large maps (> 5000
precincts), you will likely want to strengthen (increase) this constraint. Otherwise, for most maps,
the default constraint should be a good starting place.

redist_flip samples from a known target distribution which can be described using the constraints.
The following describes the constraints available. The general advice is to set weights in a way that
gets between 20% and 40% acceptance on average, though more tuning advice is available in the
vignette on using MCMC methods.Having too small of an acceptance rate indicates that the weights
within constraints are too large and will impact sampling efficiency. If the Metropolis Hastings
acceptance rate is too large, this may impact the target distribution, but may be fine for general
exploration of possible maps.

There are currently 9 implemented constraint types, though ‘compact and partisan have sub-types
which are specified via a character metric within their respective list objects. The constraints are
as follows:

• compact - biases the algorithm towards drawing more compact districts.

• weight - the coefficient to put on the Gibbs constraint

• metric - which metric to use. Must be one of edges-removed (the default), polsby-popper,
fryer-holden, or log-st. Using Polsby Popper is generally not recommended, as edges-removed
is faster and highly correlated. log-st can be used to match the target distribution of redist_smc
or redist_mergesplit.

• areas - Only used with polsby-popper - A vector of precinct areas.

98 redist_flip

• borderlength_mat - Only used with polsby-popper - A matrix of precinct border lengths.
• ssdmat - Only used with fryer-holden - A matrix of squared distances between precinct

centroids.
• ssd_denom - Only used with fryer-holden - a positive integer to use as the normalizing

constant for the Relative Proximity Index.
• population - A Gibbs constraint to complement the hard population constraint set by pop_tol.

This penalizes moves which move away from smaller population parity deviations. It is very
useful when an init_plan sits outside of the desired pop_tol but there are substantive rea-
sons to use that plan. This constraint uses the input to total_pop.

• weight - the coefficient to put on the Gibbs constraint
• countysplit This is a Gibbs constraint to minimize county splits. Unlike SMC’s county

constraint, this allows for more than ndists - 1 splits and does not require that counties are
contiguous.

• weight - the coefficient to put on the Gibbs constraint
• hinge This uses the proportion of a group in a district and matches to the nearest target pro-

portion, and then creates a penalty of
√
max(0, nearest.target− group.pct).

• weight - the coefficient to put on the Gibbs constraint
• minorityprop - A numeric vector of minority proportions (between 0 and 1) which districts

should aim to have
• vra This takes two target proportions of the presence of a minority group within a district.
(|target.min− group.pct||target.other − group.pct|)1.5)

• weight - the coefficient to put on the Gibbs constraint
• target_min - the target minority percentage. Often, this is set to 0.55 to encourage minority

majority districts.
• target_other - the target minority percentage for non majority minority districts.
• minority This constraint sorts the districts by the proportion of a group in a district and com-

pares the highest districts to the entries of minorityprop. This takes the form
∑n

i=1

√
|group.pct(i)−minorityprop(i)|

where n is the length of minorityprop input.
• weight - the coefficient to put on the Gibbs constraint
• minorityprop - A numeric vector of minority proportions (between 0 and 1) which districts

should aim to have
• similarity This is a status-quo constraint which penalizes plans which are very different

from the starting place. It is useful for local exploration.
• weight - the coefficient to put on the Gibbs constraint
• partisan This is a constraint which minimizes partisan bias, either as measured as the differ-

ence from proportional representation or as the magnitude of the efficiency gap.
• weight - the coefficient to put on the Gibbs constraint
• rvote - An integer vector of votes for Republicans or other party
• dvote - An integer vector of votes for Democrats or other party
• metric - which metric to use. Must be one of proportional-representation or efficiency-gap.
• segregation This constraint attempts to minimize the degree of dissimilarity between dis-

tricts by group population.
• weight - the coefficient to put on the Gibbs constraint

redist_flip_anneal 99

Value

A redist_plans object containing the simulated plans.

References

Fifield, B., Higgins, M., Imai, K., & Tarr, A. (2020). Automated redistricting simulation using
Markov chain Monte Carlo. Journal of Computational and Graphical Statistics, 29(4), 715-728.

Examples

data(iowa)
iowa_map <- redist_map(iowa, ndists = 4, existing_plan = cd_2010, total_pop = pop,

pop_tol = 0.05)
sims <- redist_flip(map = iowa_map, nsims = 100)

redist_flip_anneal Flip MCMC Redistricting Simulator using Simulated Annealing

Description

redist_flip_anneal simulates congressional redistricting plans using Markov chain Monte Carlo
methods coupled with simulated annealing.

Usage

redist_flip_anneal(
map,
nsims,
warmup = 0,
init_plan = NULL,
constraints = redist_constr(),
num_hot_steps = 40000,
num_annealing_steps = 60000,
num_cold_steps = 20000,
eprob = 0.05,
lambda = 0,
adapt_lambda = FALSE,
adapt_eprob = FALSE,
exact_mh = FALSE,
maxiterrsg = 5000,
verbose = TRUE

)

100 redist_map

Arguments

map A redist_map object.

nsims The number of samples to draw, not including warmup.

warmup The number of warmup samples to discard.

init_plan A vector containing the congressional district labels of each geographic unit.
The default is NULL. If not provided, a random initial plan will be generated using
redist_smc. You can also request to initialize using redist.rsg by supplying
’rsg’, though this is not recommended behavior.

constraints A redist_constr object.

num_hot_steps The number of steps to run the simulator at beta = 0. Default is 40000.

num_annealing_steps

The number of steps to run the simulator with linearly changing beta schedule.
Default is 60000

num_cold_steps The number of steps to run the simulator at beta = 1. Default is 20000.

eprob The probability of keeping an edge connected. The default is 0.05.

lambda The parameter determining the number of swaps to attempt each iteration of the
algorithm. The number of swaps each iteration is equal to Pois(lambda) + 1.
The default is 0.

adapt_lambda Whether to adaptively tune the lambda parameter so that the Metropolis-Hastings
acceptance probability falls between 20% and 40%. Default is FALSE.

adapt_eprob Whether to adaptively tune the edgecut probability parameter so that the Metropolis-
Hastings acceptance probability falls between 20% and 40%. Default is FALSE.

exact_mh Whether to use the approximate (0) or exact (1) Metropolis-Hastings ratio cal-
culation for accept-reject rule. Default is FALSE.

maxiterrsg Maximum number of iterations for random seed-and-grow algorithm to generate
starting values. Default is 5000.

verbose Whether to print initialization statement. Default is TRUE.

Value

redist_plans

redist_map Create a redist_map object.

Description

Sets up a redistricting problem.

redist_map 101

Usage

redist_map(
...,
existing_plan = NULL,
pop_tol = NULL,
total_pop = c("pop", "population", "total_pop", "POP100"),
ndists = NULL,
pop_bounds = NULL,
adj = NULL,
adj_col = "adj",
planarize = 3857

)

as_redist_map(x)

Arguments

... column elements to be bound into a redist_map object or a single list or
data.frame. These will be passed on to the tibble constructor.

existing_plan <tidy-select> the existing district assignment. Must be numeric or convertible
to numeric.

pop_tol <data-masking> the population tolerance. The percentage deviation from the
average population will be constrained to be no more than this number. If
existing_plan is provided, defaults to the parity of that plan; otherwise, de-
faults to 0.01.

total_pop <tidy-select> the vector of precinct populations. Defaults to the pop, population,
or total_pop columns, if one exists.

ndists <data-masking> the integer number of districts to partition the map into. Must
be specified if existing_plan is not supplied.

pop_bounds <data-masking> more specific population bounds, in the form of c(lower,
target, upper).

adj the adjacency graph for the object. Defaults to being computed from the data if
it is coercible to a shapefile.

adj_col the name of the adjacency graph column

planarize a number, indicating the CRS to project the shapefile to if it is latitude-longitude
based. Set to NULL or FALSE to avoid planarizing.

x an object to be coerced

Details

A redist_map object is a tibble which contains an adjacency list and additional information about
the number of districts and population bounds. It supports all of the dplyr generics, and will adjust
the adjacency list and attributes according to these functions; i.e., if we filter to a subset of units,
the graph will change to subset to these units, and the population bounds will adjust accordingly. If
an existing map is also attached to the object, the number of districts will also adjust. Subsetting
with `[` and `[[` does not recompute graphs or attributes.

102 redist_mergesplit

Other useful methods for redist_map objects:

• merge_by

• get_adj

• plot.redist_map

Value

A redist_map object

Examples

data(fl25)
d <- redist_map(fl25, ndists = 3, pop_tol = 0.05, total_pop = pop)
dplyr::filter(d, pop >= 10e3)

redist_mergesplit Merge-Split/Recombination MCMC Redistricting Sampler (Carter et
al. 2019)

Description

redist_mergesplit uses a Markov Chain Monte Carlo algorithm (Carter et al. 2019; based on
DeFord et. al 2019) to generate congressional or legislative redistricting plans according to conti-
guity, population, compactness, and administrative boundary constraints. The MCMC proposal is
the same as is used in the SMC sampler (McCartan and Imai 2023); it is similar but not identical
to those used in the references. 1-level hierarchical Merge-split is supported through the counties
parameter; unlike in the SMC algorithm, this does not guarantee a maximum number of county
splits.

Usage

redist_mergesplit(
map,
nsims,
warmup = if (is.null(init_plan)) 10 else max(100, nsims%/%5),
thin = 1L,
init_plan = NULL,
counties = NULL,
compactness = 1,
constraints = list(),
constraint_fn = function(m) rep(0, ncol(m)),
adapt_k_thresh = 0.99,
k = NULL,
init_name = NULL,
silly_adj_fix = FALSE,

redist_mergesplit 103

verbose = FALSE,
silent = FALSE

)

Arguments

map A redist_map object.

nsims The number of samples to draw, including warmup.

warmup The number of warmup samples to discard. Recommended to be at least the
first 20% of samples, and in any case no less than around 100 samples, unless
initializing from a random plan.

thin Save every thin-th sample. Defaults to no thinning (1).

init_plan The initial state of the map. If not provided, will default to the reference map
of the map object, or if none exists, will sample a random initial state using
redist_smc. You can also request a random initial state by setting init_plan="sample".

counties A vector containing county (or other administrative or geographic unit) labels
for each unit, which may be integers ranging from 1 to the number of counties,
or a factor or character vector. If provided, the algorithm will generate maps
tend to follow county lines. There is no strength parameter associated with
this constraint. To adjust the number of county splits further, or to constrain
a second type of administrative split, consider using add_constr_splits(),
add_constr_multisplits(), and add_constr_total_splits().

compactness Controls the compactness of the generated districts, with higher values prefer-
ring more compact districts. Must be nonnegative. See the ’Details’ section for
more information, and computational considerations.

constraints A list containing information on constraints to implement. See the ’Details’
section for more information.

constraint_fn A function which takes in a matrix where each column is a redistricting plan and
outputs a vector of log-weights, which will be added the the final weights.

adapt_k_thresh The threshold value used in the heuristic to select a value k_i for each splitting
iteration. Set to 0.9999 or 1 if the algorithm does not appear to be sampling from
the target distribution. Must be between 0 and 1.

k The number of edges to consider cutting after drawing a spanning tree. Should
be selected automatically in nearly all cases.

init_name a name for the initial plan, or FALSE to not include the initial plan in the output.
Defaults to the column name of the existing plan, or "<init>" if the initial plan
is sampled.

silly_adj_fix Heuristic for fixing weird inputs.

verbose Whether to print out intermediate information while sampling. Recommended.

silent Whether to suppress all diagnostic information.

Details

This function draws samples from a specific target measure, controlled by the map, compactness,
and constraints parameters.

104 redist_mergesplit_parallel

Key to ensuring good performance is monitoring the acceptance rate, which is reported at the sample
level in the output. Users should also check diagnostics of the sample by running summary.redist_plans().

Higher values of compactness sample more compact districts; setting this parameter to 1 is com-
putationally efficient and generates nicely compact districts.

Value

redist_mergesplit returns an object of class redist_plans containing the simulated plans.

References

Carter, D., Herschlag, G., Hunter, Z., and Mattingly, J. (2019). A merge-split proposal for reversible
Monte Carlo Markov chain sampling of redistricting plans. arXiv preprint arXiv:1911.01503.

McCartan, C., & Imai, K. (2023). Sequential Monte Carlo for Sampling Balanced and Compact
Redistricting Plans. Annals of Applied Statistics 17(4). Available at doi:10.1214/23AOAS1763.

DeFord, D., Duchin, M., and Solomon, J. (2019). Recombination: A family of Markov chains for
redistricting. arXiv preprint arXiv:1911.05725.

Examples

data(fl25)

fl_map <- redist_map(fl25, ndists = 3, pop_tol = 0.1)

sampled_basic <- redist_mergesplit(fl_map, 10000)

sampled_constr <- redist_mergesplit(fl_map, 10000, constraints = list(
incumbency = list(strength = 1000, incumbents = c(3, 6, 25))

))

redist_mergesplit_parallel

Parallel Merge-Split/Recombination MCMC Redistricting Sampler

Description

redist_mergesplit_parallel() runs redist_mergesplit() on several chains in parallel.

Usage

redist_mergesplit_parallel(
map,
nsims,
chains = 1,
warmup = if (is.null(init_plan)) 10 else max(100, nsims%/%5),

https://doi.org/10.1214/23-AOAS1763

redist_mergesplit_parallel 105

thin = 1L,
init_plan = NULL,
counties = NULL,
compactness = 1,
constraints = list(),
constraint_fn = function(m) rep(0, ncol(m)),
adapt_k_thresh = 0.99,
k = NULL,
ncores = NULL,
cl_type = "PSOCK",
return_all = TRUE,
init_name = NULL,
silly_adj_fix = FALSE,
verbose = FALSE,
silent = FALSE

)

Arguments

map A redist_map object.

nsims The number of samples to draw, including warmup.

chains the number of parallel chains to run. Each chain will have nsims draws. If
init_plan is sampled, each chain will be initialized with its own sampled plan.

warmup The number of warmup samples to discard. Recommended to be at least the
first 20% of samples, and in any case no less than around 100 samples, unless
initializing from a random plan.

thin Save every thin-th sample. Defaults to no thinning (1).

init_plan The initial state of the map, provided as a single vector to be shared across all
chains, or a matrix with chains columns. If not provided, will default to the
reference map of the map object, or if none exists, will sample a random initial
state using redist_smc. You can also request a random initial state for each chain
by setting init_plan="sample".

counties A vector containing county (or other administrative or geographic unit) labels
for each unit, which may be integers ranging from 1 to the number of counties,
or a factor or character vector. If provided, the algorithm will generate maps
tend to follow county lines. There is no strength parameter associated with
this constraint. To adjust the number of county splits further, or to constrain
a second type of administrative split, consider using add_constr_splits(),
add_constr_multisplits(), and add_constr_total_splits().

compactness Controls the compactness of the generated districts, with higher values prefer-
ring more compact districts. Must be nonnegative. See the ’Details’ section for
more information, and computational considerations.

constraints A list containing information on constraints to implement. See the ’Details’
section for more information.

constraint_fn A function which takes in a matrix where each column is a redistricting plan and
outputs a vector of log-weights, which will be added the the final weights.

106 redist_mergesplit_parallel

adapt_k_thresh The threshold value used in the heuristic to select a value k_i for each splitting
iteration. Set to 0.9999 or 1 if the algorithm does not appear to be sampling from
the target distribution. Must be between 0 and 1.

k The number of edges to consider cutting after drawing a spanning tree. Should
be selected automatically in nearly all cases.

ncores the number of parallel processes to run. Defaults to the maximum available.

cl_type the cluster type (see makeCluster()). Safest is "PSOCK", but "FORK" may be
appropriate in some settings.

return_all if TRUE return all sampled plans; otherwise, just return the final plan from each
chain.

init_name a name for the initial plan, or FALSE to not include the initial plan in the output.
Defaults to the column name of the existing plan, or "<init>" if the initial plan
is sampled.

silly_adj_fix Heuristic for fixing weird inputs.

verbose Whether to print out intermediate information while sampling. Recommended.

silent Whether to suppress all diagnostic information.

Details

This function draws samples from a specific target measure, controlled by the map, compactness,
and constraints parameters.

Key to ensuring good performance is monitoring the acceptance rate, which is reported at the sample
level in the output. Users should also check diagnostics of the sample by running summary.redist_plans().

Higher values of compactness sample more compact districts; setting this parameter to 1 is com-
putationally efficient and generates nicely compact districts.

Value

A redist_plans object with all of the simulated plans, and an additional chain column indicating
the chain the plan was drawn from.

References

Carter, D., Herschlag, G., Hunter, Z., and Mattingly, J. (2019). A merge-split proposal for reversible
Monte Carlo Markov chain sampling of redistricting plans. arXiv preprint arXiv:1911.01503.

McCartan, C., & Imai, K. (2023). Sequential Monte Carlo for Sampling Balanced and Compact
Redistricting Plans. Annals of Applied Statistics 17(4). Available at doi:10.1214/23AOAS1763.

DeFord, D., Duchin, M., and Solomon, J. (2019). Recombination: A family of Markov chains for
redistricting. arXiv preprint arXiv:1911.05725.

Examples

Not run:
data(fl25)
fl_map <- redist_map(fl25, ndists = 3, pop_tol = 0.1)
sampled <- redist_mergesplit_parallel(fl_map, nsims = 100, chains = 100)

https://doi.org/10.1214/23-AOAS1763

redist_plans 107

End(Not run)

redist_plans A set of redistricting plans

Description

A redist_plans object is essentially a data frame of summary information on each district and each
plan, along with the matrix of district assignments and information about the simulation process
used to generate the plans.

Usage

redist_plans(plans, map, algorithm, wgt = NULL, ...)

Arguments

plans a matrix with n_precinct columns and n_sims rows, or a single vector of
precinct assignments.

map a redist_map object

algorithm the algorithm used to generate the plans (usually "smc" or "mcmc")

wgt the weights to use, if any.

... Other named attributes to set

Details

The first two columns of the data frame will be draw, a factor indexing the simulation draw, and
district, an integer indexing the districts within a plan. The data frame will therefore have
n_sims*ndists rows. As a data frame, the usual dplyr methods will work.

Other useful methods for redist_plans objects:

• summary.redist_plans

• add_reference

• subset_sampled

• subset_ref

• pullback

• number_by

• match_numbers

• is_county_split

• prec_assignment

• plan_distances

108 redist_quantile_trunc

• get_plans_matrix

• get_plans_weights

• get_sampling_info

• as.matrix.redist_plans

• plot.redist_plans

Value

a new redist_plans object.

Examples

data(iowa)

iowa <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.05, total_pop = pop)
rsg_plan <- redist.rsg(iowa$adj, iowa$pop, ndists = 4, pop_tol = 0.05)$plan
redist_plans(rsg_plan, iowa, "rsg")

redist_quantile_trunc Helper function to truncate importance weights

Description

Defined as pmin(x, quantile(x, 1 - length(x)^(-0.5)))

Usage

redist_quantile_trunc(x)

Arguments

x the weights

Value

numeric vector

Examples

redist_quantile_trunc(c(1, 2, 3, 4))

redist_shortburst 109

redist_shortburst Redistricting Optimization through Short Bursts

Description

This function uses redist_mergesplit() or redist_flip() to optimize a redistrict plan accord-
ing to a user-provided criteria. It does so by running the Markov chain for "short bursts" of usually
10 iterations, and then starting the chain anew from the best plan in the burst, according to the crite-
ria. This implements the ideas in the below-referenced paper, "Voting Rights, Markov Chains, and
Optimization by Short Bursts."

Usage

redist_shortburst(
map,
score_fn = NULL,
stop_at = NULL,
burst_size = ifelse(backend == "mergesplit", 10L, 50L),
max_bursts = 500L,
maximize = TRUE,
init_plan = NULL,
counties = NULL,
constraints = redist_constr(map),
compactness = 1,
adapt_k_thresh = 0.95,
reversible = TRUE,
fixed_k = NULL,
return_all = TRUE,
thin = 1L,
backend = "mergesplit",
flip_lambda = 0,
flip_eprob = 0.05,
verbose = TRUE

)

Arguments

map A redist_map object.

score_fn A function which takes a matrix of plans and returns a score (or, generally, a
row vector) for each plan. Can also be a purrr-style anonymous function. See
?scorers for some function factories for common scoring rules.

stop_at A threshold to stop optimization at. When score_fn returns a row vector per
plan, maximize can be an equal-length vector specifying a threshold for each
dimension, which must all be met for the algorithm to stop.

burst_size The size of each burst. 10 is recommended for the mergesplit backend and 50
for the flip backend. Can also provide burst schedule function which takes the

110 redist_shortburst

current iteration (an integer) and returns the desired burst size. This can be a
random function.

max_bursts The maximum number of bursts to run before returning.

maximize If TRUE, try to maximize the score; otherwise, try to minimize it. When score_fn
returns a row vector per plan, maximize can be an equal-length vector specifying
whether each dimension should be maximized or minimized.

init_plan The initial state of the map. If not provided, will default to the reference map
of the map object, or if none exists, will sample a random initial state using
redist_smc(). You can also request a random initial state by setting init_plan="sample".

counties A vector containing county (or other administrative or geographic unit) labels
for each unit, which may be integers ranging from 1 to the number of counties, or
a factor or character vector. If provided, the algorithm will only generate maps
which split up to ndists-1 counties. If no county-split constraint is desired, this
parameter should be left blank.

constraints A redist_constr with Gibbs constraints.

compactness Controls the compactness of the generated districts, with higher values prefer-
ring more compact districts. Must be non-negative. See redist_mergesplit
for more information.

adapt_k_thresh The threshold value used in the heuristic to select a value k_i for each splitting
iteration.

reversible If FALSE and backend="mergesplit", the Markov chain used will not be re-
versible. This may speed up optimization.

fixed_k If not NULL, will be used to set the k parameter for the mergesplit backend. If
e.g. k=1 then the best edge in each spanning tree will be used. Lower values
may speed up optimization at the cost of the Markov chain no longer targeting a
known distribution. Recommended only in conjunction with reversible=FALSE.

return_all Whether to return all the burst results or just the best one (generally, the Pareto
frontier). Recommended for monitoring purposes.

thin Save every thin-th sample. Defaults to no thinning (1). Ignored if return_all=TRUE.

backend the MCMC algorithm to use within each burst, either "mergesplit" or "flip".

flip_lambda The parameter determining the number of swaps to attempt each iteration of flip
mcmc. The number of swaps each iteration is equal to Pois(lambda) + 1. The
default is 0.

flip_eprob The probability of keeping an edge connected in flip mcmc. The default is 0.05.

verbose Whether to print out intermediate information while sampling. Recommended
for monitoring purposes.

Value

a redist_plans object containing the final best plan (or the best plans after each burst, if return_all=TRUE.

References

Cannon, S., Goldbloom-Helzner, A., Gupta, V., Matthews, J. N., & Suwal, B. (2020). Voting Rights,
Markov Chains, and Optimization by Short Bursts. arXiv preprint arXiv:2011.02288.

redist_smc 111

Examples

data(iowa)

iowa_map <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.01)
redist_shortburst(iowa_map, scorer_frac_kept(iowa_map), max_bursts = 50)
redist_shortburst(iowa_map, ~ 1 - scorer_frac_kept(iowa_map)(.), max_bursts = 50)

redist_smc SMC Redistricting Sampler (McCartan and Imai 2023)

Description

redist_smc uses a Sequential Monte Carlo algorithm (McCartan and Imai 2023) to generate rep-
resentative samples of congressional or legislative redistricting plans according to contiguity, pop-
ulation, compactness, and administrative boundary constraints.

Usage

redist_smc(
map,
nsims,
counties = NULL,
compactness = 1,
constraints = list(),
resample = TRUE,
runs = 1L,
ncores = 0L,
init_particles = NULL,
n_steps = NULL,
adapt_k_thresh = 0.99,
seq_alpha = 0.5,
truncate = (compactness != 1),
trunc_fn = redist_quantile_trunc,
pop_temper = 0,
final_infl = 1,
ref_name = NULL,
verbose = FALSE,
silent = FALSE

)

Arguments

map A redist_map() object.

nsims The number of samples to draw.

112 redist_smc

counties A vector containing county (or other administrative or geographic unit) labels
for each unit, which may be integers ranging from 1 to the number of counties,
or a factor or character vector. If provided, the algorithm will only generate
maps which split up to ndists-1 counties. Even there are fewer counties than
ndists - 1, the spanning trees will change the results of the simulations. There
is no strength parameter associated with this constraint. To adjust the number
of county splits further, or to constrain a second type of administrative split, con-
sider using add_constr_splits(), add_constr_multisplits(), and add_constr_total_splits().

compactness Controls the compactness of the generated districts, with higher values prefer-
ring more compact districts. Must be nonnegative. See the ’Details’ section for
more information, and computational considerations.

constraints A redist_constr() object or a list containing information on sampling con-
straints. See constraints for more information.

resample Whether to perform a final resampling step so that the generated plans can be
used immediately. Set this to FALSE to perform direct importance sampling
estimates, or to adjust the weights manually.

runs How many independent parallel runs to conduct. Each run will have nsims
simulations. Multiple runs allows for estimation of simulation standard errors.
Output will only be shown for the first run. For compatibility with MCMC
methods, runs are identified with the chain column in the output.

ncores How many cores to use to parallelize plan generation within each run. The
default, 0, will use the number of available cores on the machine as long as
nsims and the number of units is large enough. If runs>1 you will need to set
this manually. If more than one core is used, the sampler output will not be fully
reproducible with set.seed(). If full reproducibility is desired, set ncores=1.

init_particles A matrix of partial plans to begin sampling from. For advanced use only. The
matrix must have nsims columns and a row for every precinct. It is important to
ensure that the existing districts meet contiguity and population constraints, or
there may be major issues when sampling.

n_steps How many steps to run the SMC algorithm for. Each step splits off a new district.
Defaults to all remaining districts. If fewer than the number of remaining splits,
reference plans are disabled.

adapt_k_thresh The threshold value used in the heuristic to select a value k_i for each splitting
iteration. Higher values are more accurate but may require more computation.
Set to 1 for the most conservative sampling. Must be between 0 and 1.

seq_alpha The amount to adjust the weights by at each resampling step; higher values
prefer exploitation, while lower values prefer exploration. Must be between 0
and 1.

truncate Whether to truncate the importance sampling weights at the final step by trunc_fn.
Recommended if compactness is not 1. Truncation only applied if resample=TRUE.

trunc_fn A function which takes in a vector of weights and returns a truncated vector.
If the loo package is installed (strongly recommended), will default to Pareto-
smoothed Importance Sampling (PSIS) rather than naive truncation.

pop_temper The strength of the automatic population tempering. Try values of 0.01-0.05 to
start if the algorithm gets stuck on the final few splits.

redist_smc 113

final_infl A multiplier for the population constraint on the final iteration. Used to loosen
the constraint when the sampler is getting stuck on the final split. pop_temper
should be tried first, since using final_infl will actually change the target
distribution.

ref_name a name for the existing plan, which will be added as a reference plan, or FALSE
to not include the initial plan in the output. Defaults to the column name of the
existing plan.

verbose Whether to print out intermediate information while sampling. Recommended.

silent Whether to suppress all diagnostic information.

Details

This function draws samples from a specific target measure controlled by the map, compactness,
and constraints parameters.

Key to ensuring good performance is monitoring the efficiency of the resampling process at each
SMC stage. Unless silent=FALSE, this function will print out the effective sample size of each
resampling step to allow the user to monitor the efficiency. If verbose=TRUE the function will also
print out information on the ki values automatically chosen and the acceptance rate (based on the
population constraint) at each step. Users should also check diagnostics of the sample by running
summary.redist_plans().

Higher values of compactness sample more compact districts; setting this parameter to 1 is compu-
tationally efficient and generates nicely compact districts. Values of other than 1 may lead to highly
variable importance sampling weights. In these cases, these weights are by default truncated using
redist_quantile_trunc() to stabilize the resulting estimates, but if truncation is used, a specific
truncation function should probably be chosen by the user.

Value

redist_smc returns a redist_plans object containing the simulated plans.

References

McCartan, C., & Imai, K. (2023). Sequential Monte Carlo for Sampling Balanced and Compact
Redistricting Plans. Annals of Applied Statistics 17(4). Available at doi:10.1214/23AOAS1763.

Examples

data(fl25)

fl_map <- redist_map(fl25, ndists = 3, pop_tol = 0.1)

sampled_basic <- redist_smc(fl_map, 5000)

constr <- redist_constr(fl_map)
constr <- add_constr_incumbency(constr, strength = 100, incumbents = c(3, 6, 25))
sampled_constr <- redist_smc(fl_map, 5000, constraints = constr)

Multiple parallel independent runs
redist_smc(fl_map, 1000, runs = 2)

https://doi.org/10.1214/23-AOAS1763

114 scorer-combine

One run with multiple cores
redist_smc(fl_map, 1000, ncores = 2)

scorer-arith Scoring function arithmetic

Description

redist_scorer functions may be multiplied by constants and/or added together to form linear
combinations.

Usage

S3 method for class 'redist_scorer'
x * fn2

S3 method for class 'redist_scorer'
fn1 + fn2

S3 method for class 'redist_scorer'
fn1 - fn2

Arguments

x a numeric or a redist_scorer function, from scorers

fn2 a redist_scorer function, from scorers

fn1 a redist_scorer function, from scorers

Value

function of class redist_scorer

scorer-combine Combine scoring functions

Description

redist_scorer functions may be combined together to optimize along multiple dimensions. Rather
than linearly combining multiple scorers to form a single objective as with scorer-arith, these func-
tions allow analysts to approximate the Pareto frontier for a set of scorers.

scorer_group_pct 115

Usage

combine_scorers(...)

S3 method for class 'redist_scorer'
cbind(..., deparse.level = 1)

Arguments

... a numeric or a redist_scorer function, from scorers

deparse.level As in cbind().

Value

function of class redist_scorer. Will return a matrix with each column containing every plan’s scores
for a particular scoring function.

scorer_group_pct Scoring functions for redist_shortburst

Description

The output of these functions may be passed into redist_shortburst() as score_fn. Scoring
functions have type redist_scorer and may be combined together using basic arithmetic opera-
tions.

Usage

scorer_group_pct(map, group_pop, total_pop, k = 1)

scorer_pop_dev(map)

scorer_splits(map, counties)

scorer_multisplits(map, counties)

scorer_frac_kept(map)

scorer_polsby_popper(map, perim_df = NULL, areas = NULL, m = 1)

scorer_status_quo(map, existing_plan = get_existing(map))

Arguments

map A redist_map object.

group_pop A numeric vector with the population of the group for every precinct.

total_pop A numeric vector with the population for every precinct.

116 scorer_group_pct

k the k-th from the top group fraction to return as the score.

counties A numeric vector with an integer from 1:n_counties

perim_df perimeter distance dataframe from prep_perims()

areas area of each precinct (ie st_area(map))

m the m-th from the bottom Polsby Popper to return as the score. Defaults to 1,
the minimum Polsby Popper score

existing_plan A vector containing the current plan.

Details

Function details:

• scorer_group_pct returns the k-th top group percentage across districts. For example, if
the group is Democratic voters and k=3, then the function returns the 3rd-highest fraction
of Democratic voters across all districts. Can be used to target k VRA districts or partisan
gerrymanders.

• scorer_pop_dev returns the maximum population deviation within a plan. Smaller values are
closer to population parity, so use maximize=FALSE with this scorer.

• scorer_splits returns the fraction of counties that are split within a plan. Higher values
have more county splits, so use maximize=FALSE with this scorer.

• scorer_frac_kept returns the fraction of edges kept in each district. Higher values mean
more compactness.

• scorer_polsby_popper returns the m-th Polsby Popper score within a plan. Higher scores
correspond to more compact districts. Use m=ndists/2 to target the median compactness,
m=1 to target the minimum compactness.

• scorer_status_quo returns 1 - the rescaled variation of information distance between the
plan and the existing_plan. Larger values indicate the plan is closer to the existing plan.

Value

A scoring function of class redist_scorer which returns a single numeric value per plan. Larger
values are generally better for frac_kept, group_pct, and polsby_popper and smaller values are
better for splits and pop_dev.

Examples

data(iowa)
iowa_map <- redist_map(iowa, existing_plan = cd_2010, pop_tol = 0.05, total_pop = pop)

scorer_frac_kept(iowa_map)
scorer_status_quo(iowa_map)
scorer_group_pct(iowa_map, dem_08, tot_08, k = 2)
1.5*scorer_frac_kept(iowa_map) + 0.4*scorer_status_quo(iowa_map)
1.5*scorer_frac_kept(iowa_map) + scorer_frac_kept(iowa_map)*scorer_status_quo(iowa_map)
cbind(

comp = scorer_frac_kept(iowa_map),
sq = scorer_status_quo(iowa_map)

segregation_index 117

)

segregation_index Segregation index calculation for MCMC redistricting.

Description

redist.segcalc calculates the dissimilarity index of segregation (see Massey & Denton 1987 for
more details) for a specified subgroup under any redistricting plan.

Usage

segregation_index(
map,
group_pop,
total_pop = map[[attr(map, "pop_col")]],
.data = cur_plans()

)

redist.segcalc(plans, group_pop, total_pop)

Arguments

map a redist_map object

group_pop A vector of populations for some subgroup of interest.

total_pop A vector containing the populations of each geographic unit.

.data a redist_plans object

plans A matrix of congressional district assignments or a redist object.

Value

redist.segcalc returns a vector where each entry is the dissimilarity index of segregation (Massey
& Denton 1987) for each redistricting plan in algout.

References

Fifield, Benjamin, Michael Higgins, Kosuke Imai and Alexander Tarr. (2016) "A New Automated
Redistricting Simulator Using Markov Chain Monte Carlo." Working Paper. Available at http:
//imai.princeton.edu/research/files/redist.pdf.

Massey, Douglas and Nancy Denton. (1987) "The Dimensions of Social Segregation". Social
Forces.

http://imai.princeton.edu/research/files/redist.pdf
http://imai.princeton.edu/research/files/redist.pdf

118 subset_sampled

Examples

data(fl25)
data(fl25_enum)
data(fl25_adj)

Get an initial partition
init_plan <- fl25_enum$plans[, 5118]
fl25$init_plan <- init_plan

25 precinct, three districts - no pop constraint
fl_map <- redist_map(fl25, existing_plan = 'init_plan', adj = fl25_adj)
alg_253 <- redist_flip(fl_map, nsims = 10000)

Get Republican Dissimilarity Index from simulations
old: rep_dmi_253 <- redist.segcalc(alg_253, fl25$mccain, fl25$pop)
rep_dmi_253 <- seg_dissim(alg_253, fl25, mccain, pop) |>

redistmetrics::by_plan(ndists = 3)

subset_sampled Subset to sampled or reference draws

Description

Subset to sampled or reference draws

Usage

subset_sampled(plans, matrix = TRUE)

subset_ref(plans, matrix = TRUE)

Arguments

plans the redist_plans object

matrix if TRUE, the default, also subset the plans matrix. If the plans matrix is not
needed, turning this off may save some time.

Value

a redist_plans object, with only rows corresponding to simulated (or reference) draws remaining.

summary.redist_plans 119

summary.redist_plans Diagnostic information on sampled plans

Description

Prints diagnostic information, which varies by algorithm. All algorithms compute the plans_diversity()
of the samples.

Usage

S3 method for class 'redist_plans'
summary(object, district = 1L, all_runs = TRUE, vi_max = 100, ...)

Arguments

object a redist_plans object

district For R-hat values, which district to use for district-level summary statistics. We
strongly recommend calling match_numbers() or number_by() before exam-
ining these district-level statistics.

all_runs When there are multiple SMC runs, show detailed summary statistics for all runs
(the default), or only the first run?

vi_max The maximum number of plans to sample in computing the pairwise variation
of information distance (sample diversity).

... additional arguments (ignored)

Details

For SMC and MCMC, if there are multiple runs/chains, R-hat values will be computed for each
summary statistic. These values should be close to 1. If they are not, then there is too much
between-chain variation, indicating that there are not enough samples. R-hat values are calculated
after rank-normalization and folding. MCMC chains are split in half before R-hat is computed. For
summary statistics that vary across districts, R-hat is calculated for the first district only.

For SMC, diagnostics statistics include:

• Effective samples: the effective sample size at each iteration, computed using the SMC
weights. Larger is better. The percentage in parentheses is the ratio of the effective samples to
the total samples.

• Acceptance rate: the fraction of drawn spanning trees which yield a valid redistricting plan
within the population tolerance. Very small values (< 1%) can indicate a bottleneck and may
lead to a lack of diversity.

• Standard deviation of the log weights: More variable weights (larger s.d.) indicate less
efficient sampling. Values greater than 3 are likely problematic.

• Maximum unique plans: an upper bound on the number of unique redistricting plans that
survive each stage. The percentage in parentheses is the ratio of this number to the total
number of samples. Small values (< 100) indicate a bottleneck, which leads to a loss of
sample diversity and a higher variance.

120 tally_var

• Estimated k parameter: How many spanning tree edges were considered for cutting at each
split. Mostly informational, though large jumps may indicate a need to increase adapt_k_thresh.

• Bottleneck: An asterisk will appear in the right column if a bottleneck appears likely, based
on the values of the other statistics.

In the event of problematic diagnostics, the function will provide suggestions for improvement.

Value

A data frame containing diagnostic information, invisibly.

Examples

data(iowa)
iowa_map <- redist_map(iowa, ndists = 4, pop_tol = 0.1)
plans <- redist_smc(iowa_map, 100)
summary(plans)

tally_var Tally a variable by district

Description

Tally a variable by district

Usage

tally_var(map, x, .data = pl())

Arguments

map a redist_map object

x a variable to tally. Tidy-evaluated.

.data a redist_plans object or matrix of plans

Value

a vector containing the tallied values by district and plan (column-major)

Index

∗ analysis
get_mh_acceptance_rate, 23
get_sampling_info, 25

∗ analyze
add_reference, 5
classify_plans, 6
compare_plans, 6
competitiveness, 8
county_splits, 13
distr_compactness, 13
get_plans_matrix, 24
get_plans_weights, 24
group_frac, 26
is_county_split, 28
last_plan, 29
match_numbers, 30
min_move_parity, 32
muni_splits, 33
number_by, 33
partisan_metrics, 34
plan_distances, 38
plans_diversity, 37
plot.redist_classified, 39
prec_assignment, 42
prec_cooccurrence, 43
proj, 45
pullback, 47
rbind.redist_plans, 47
redist.district.splits, 58
redist.multisplits, 69
redist.parity, 70
redist_ci, 93
redist_plans, 107
segregation_index, 117
subset_sampled, 118
summary.redist_plans, 119
tally_var, 120

∗ data
EPSG, 17

fl25, 17
fl250, 18
fl25_adj, 19
fl25_enum, 20
fl70, 20
iowa, 27

∗ enumerate
redist.calc.frontier.size, 48
redist.enumpart, 59
redist.init.enumpart, 63
redist.prep.enumpart, 83
redist.read.enumpart, 85
redist.run.enumpart, 88

∗ plot
plot.redist_map, 41
plot.redist_plans, 42
redist.diagplot, 55
redist.plot.adj, 70
redist.plot.contr_pfdr, 71
redist.plot.cores, 72
redist.plot.distr_qtys, 73
redist.plot.hist, 75
redist.plot.majmin, 76
redist.plot.map, 76
redist.plot.plans, 78
redist.plot.scatter, 79
redist.plot.trace, 80
redist.plot.varinfo, 81

∗ post
redist.combine.mpi, 49
redist.ipw, 63
redist.smc_is_ci, 90
redist.uncoarsen, 92

∗ prepare
freeze, 21
get_adj, 22
get_existing, 23
get_pop_tol, 25
get_target, 26

121

122 INDEX

is_contiguous, 28
make_cores, 29
merge_by, 31
plot.redist_constr, 40
plot.redist_map, 41
redist.coarsen.adjacency, 49
redist.constraint.helper, 51
redist.county.id, 52
redist.county.relabel, 53
redist.find.target, 60
redist.findparams, 60
redist.plot.penalty, 77
redist.reduce.adjacency, 86
redist.sink.plan, 89
redist.subset, 91
redist_map, 100
scorer-arith, 114
scorer-combine, 114
scorer_group_pct, 115

∗ simulate
constraints, 9
redist.crsg, 53
redist.mcmc.mpi, 66
redist.rsg, 87
redist_constr, 94
redist_flip, 95
redist_flip_anneal, 99
redist_mergesplit, 102
redist_mergesplit_parallel, 104
redist_shortburst, 109
redist_smc, 111

*.redist_scorer (scorer-arith), 114
+.redist_scorer (scorer-arith), 114
-.redist_scorer (scorer-arith), 114
?scorers, 109

add_constr_compet (constraints), 9
add_constr_compet(), 94
add_constr_custom (constraints), 9
add_constr_custom(), 94
add_constr_edges_rem (constraints), 9
add_constr_edges_rem(), 94
add_constr_fry_hold (constraints), 9
add_constr_fry_hold(), 94
add_constr_grp_hinge (constraints), 9
add_constr_grp_hinge(), 95
add_constr_grp_inv_hinge (constraints),

9
add_constr_grp_inv_hinge(), 95

add_constr_grp_pow (constraints), 9
add_constr_grp_pow(), 77, 78, 95
add_constr_incumbency (constraints), 9
add_constr_incumbency(), 95
add_constr_log_st (constraints), 9
add_constr_log_st(), 95
add_constr_multisplits (constraints), 9
add_constr_multisplits(), 95
add_constr_polsby (constraints), 9
add_constr_polsby(), 95
add_constr_pop_dev (constraints), 9
add_constr_pop_dev(), 95
add_constr_segregation (constraints), 9
add_constr_segregation(), 95
add_constr_splits (constraints), 9
add_constr_splits(), 95
add_constr_status_quo (constraints), 9
add_constr_status_quo(), 95
add_constr_total_splits (constraints), 9
add_constr_total_splits(), 95
add_reference, 5, 107
as.matrix.redist_plans, 108
as.matrix.redist_plans

(get_plans_matrix), 24
as_redist_map (redist_map), 100
avg_by_prec, 5

cbind(), 115
cbind.redist_scorer (scorer-combine),

114
classify_plans, 6
classify_plans(), 39
combine_scorers (scorer-combine), 114
compare_plans, 6
compare_plans(), 39
competitiveness, 8
constraints, 9, 112
county_splits, 13

distr_compactness, 13
dplyr, 107

EPSG, 17

fl25, 17, 20
fl250, 18
fl25_adj, 17, 19, 19
fl25_enum, 17, 19, 20
fl70, 20

INDEX 123

freeze, 21

geom_boxplot, 74
geom_histogram, 75
geom_line, 80
geom_point, 79
get_adj, 22, 102
get_existing, 23
get_mh_acceptance_rate, 23
get_plans_matrix, 24, 108
get_plans_weights, 24, 108
get_pop_tol, 25
get_sampling_info, 25, 108
get_target, 26
group_frac, 26

hclust(), 6
hist.redist_plans (redist.plot.hist), 75

iowa, 27
is_contiguous, 28
is_county_split, 28, 107

last_plan, 29
loo, 112

make_cores, 29
makeCluster(), 106
match_numbers, 30, 107
merge_by, 31, 47, 102
min_move_parity, 32
muni_splits, 33

number_by, 33, 107

partisan_metrics, 34
pl, 36
plan_distances, 38, 107
plan_distances(), 6
plan_parity (redist.parity), 70
plans_diversity, 37
plans_diversity(), 119
plot.redist_classified, 39
plot.redist_classified(), 6
plot.redist_constr, 40
plot.redist_constr(), 11
plot.redist_map, 41, 102
plot.redist_plans, 42, 108
prec_assignment, 42, 107
prec_cooccurrence, 43

prep_perims(), 14, 116
print.redist_classified, 43
print.redist_constr, 44
print.redist_map, 44
print.redist_plans, 45
proj, 45
proj_avg (proj), 45
proj_avg(), 5
proj_contr (proj), 45
proj_contr(), 72
proj_distr (proj), 45
pullback, 47, 107

rbind.redist_plans, 47
redist.adjacency, 48
redist.calc.frontier.size, 48
redist.coarsen.adjacency, 49
redist.combine.mpi, 49
redist.compactness (distr_compactness),

13
redist.competitiveness

(competitiveness), 8
redist.constraint.helper, 51
redist.county.id, 52
redist.county.relabel, 53
redist.crsg, 53
redist.diagplot, 55
redist.dist.pop.overlap, 57
redist.distances (plan_distances), 38
redist.district.splits, 58
redist.enumpart, 59
redist.find.target, 60
redist.findparams, 60
redist.freeze (freeze), 21
redist.group.percent (group_frac), 26
redist.identify.cores (make_cores), 29
redist.init.enumpart, 63
redist.ipw, 63
redist.mcmc.mpi, 66
redist.metrics (partisan_metrics), 34
redist.multisplits, 69
redist.muni.splits (muni_splits), 33
redist.parity, 70
redist.plot.adj, 41, 70
redist.plot.contr_pfdr, 71
redist.plot.contr_pfdr(), 45
redist.plot.cores, 72
redist.plot.cores(), 30
redist.plot.distr_qtys, 73

124 INDEX

redist.plot.hist, 75
redist.plot.majmin, 76
redist.plot.map, 41, 76
redist.plot.penalty, 77
redist.plot.plans, 42, 78
redist.plot.scatter, 79
redist.plot.trace, 80
redist.plot.varinfo, 81
redist.plot.wted.adj, 81
redist.prec.pop.overlap, 82
redist.prep.enumpart, 83
redist.random.subgraph, 84
redist.read.enumpart, 85
redist.reduce.adjacency, 86
redist.reorder, 86
redist.rsg, 87
redist.run.enumpart, 88
redist.segcalc (segregation_index), 117
redist.sink.plan, 89
redist.smc_is_ci, 90
redist.splits (county_splits), 13
redist.subset, 91
redist.uncoarsen, 92
redist.wted.adj, 92
redist_ci, 93
redist_constr, 40, 94
redist_constr(), 9, 10, 112
redist_flip, 95
redist_flip(), 109
redist_flip_anneal, 99
redist_map, 8, 11, 13, 14, 22, 25, 26, 29,

31–34, 39, 61, 70, 72, 96, 100, 100,
103, 105, 107, 109, 115, 117

redist_map(), 94, 111
redist_mcmc_ci (redist_ci), 93
redist_mergesplit, 102, 110
redist_mergesplit(), 9, 94, 104, 109
redist_mergesplit_parallel, 104
redist_plans, 7, 8, 13, 14, 26, 29, 33, 34, 37,

39, 42, 43, 45–47, 70, 75, 80, 93, 99,
104, 106, 107, 113, 117, 119

redist_quantile_trunc, 108
redist_quantile_trunc(), 113
redist_shortburst, 109
redist_smc, 103, 111
redist_smc(), 9, 94, 110
redist_smc_ci (redist_ci), 93

scorer-arith, 114, 114

scorer-combine, 114
scorer_frac_kept (scorer_group_pct), 115
scorer_group_pct, 115
scorer_multisplits (scorer_group_pct),

115
scorer_polsby_popper

(scorer_group_pct), 115
scorer_pop_dev (scorer_group_pct), 115
scorer_splits (scorer_group_pct), 115
scorer_status_quo (scorer_group_pct),

115
scorers, 114, 115
scorers (scorer_group_pct), 115
segregation_index, 117
set_adj (get_adj), 22
set_pop_tol (get_pop_tol), 25
sf::st_transform(), 17
str(), 94
subset_ref, 107
subset_ref (subset_sampled), 118
subset_sampled, 107, 118
summarize, 47
summarize(), 93
summary.redist_plans, 107, 119

tally_var, 120
tibble, 101

weights.redist_plans
(get_plans_weights), 24

	add_reference
	avg_by_prec
	classify_plans
	compare_plans
	competitiveness
	constraints
	county_splits
	distr_compactness
	EPSG
	fl25
	fl250
	fl25_adj
	fl25_enum
	fl70
	freeze
	get_adj
	get_existing
	get_mh_acceptance_rate
	get_plans_matrix
	get_plans_weights
	get_pop_tol
	get_sampling_info
	get_target
	group_frac
	iowa
	is_contiguous
	is_county_split
	last_plan
	make_cores
	match_numbers
	merge_by
	min_move_parity
	muni_splits
	number_by
	partisan_metrics
	pl
	plans_diversity
	plan_distances
	plot.redist_classified
	plot.redist_constr
	plot.redist_map
	plot.redist_plans
	prec_assignment
	prec_cooccurrence
	print.redist_classified
	print.redist_constr
	print.redist_map
	print.redist_plans
	proj
	pullback
	rbind.redist_plans
	redist.adjacency
	redist.calc.frontier.size
	redist.coarsen.adjacency
	redist.combine.mpi
	redist.constraint.helper
	redist.county.id
	redist.county.relabel
	redist.crsg
	redist.diagplot
	redist.dist.pop.overlap
	redist.district.splits
	redist.enumpart
	redist.find.target
	redist.findparams
	redist.init.enumpart
	redist.ipw
	redist.mcmc.mpi
	redist.multisplits
	redist.parity
	redist.plot.adj
	redist.plot.contr_pfdr
	redist.plot.cores
	redist.plot.distr_qtys
	redist.plot.hist
	redist.plot.majmin
	redist.plot.map
	redist.plot.penalty
	redist.plot.plans
	redist.plot.scatter
	redist.plot.trace
	redist.plot.varinfo
	redist.plot.wted.adj
	redist.prec.pop.overlap
	redist.prep.enumpart
	redist.random.subgraph
	redist.read.enumpart
	redist.reduce.adjacency
	redist.reorder
	redist.rsg
	redist.run.enumpart
	redist.sink.plan
	redist.smc_is_ci
	redist.subset
	redist.uncoarsen
	redist.wted.adj
	redist_ci
	redist_constr
	redist_flip
	redist_flip_anneal
	redist_map
	redist_mergesplit
	redist_mergesplit_parallel
	redist_plans
	redist_quantile_trunc
	redist_shortburst
	redist_smc
	scorer-arith
	scorer-combine
	scorer_group_pct
	segregation_index
	subset_sampled
	summary.redist_plans
	tally_var
	Index

